
MuscalietJS: Rethinking Layered Dynamic Web Runtimes

Behnam Robatmili† Călin Caşcaval† Mehrdad Reshadi‡1 Madhukar N. Kedlaya‖

Seth Fowler§1 Vrajesh Bhavsar† Michael Weber† Ben Hardekopf‖
†Qualcomm Research Silicon Valley ‖University of California, Santa Barbara ‡InstartLogic §Mozilla

mcjs.devel@qti.qualcomm.com

Abstract
Layered JavaScript engines, in which the JavaScript run-
time is built on top another managed runtime, provide better
extensibility and portability compared to traditional mono-
lithic engines. In this paper, we revisit the design of layered
JavaScript engines and propose a layered architecture, called
MuscalietJS2, that splits the responsibilities of a JavaScript
engine between a high-level, JavaScript-specific component
and a low-level, language-agnostic .NET VM. To make up
for the performance loss due to layering, we propose a two
pronged approach: high-level JavaScript optimizations and
exploitation of low-level VM features that produce very effi-
cient code for hot functions. We demonstrate the validity of
the MuscalietJS design through a comprehensive evaluation
using both the Sunspider benchmarks and a set of web work-
loads. We demonstrate that our approach outperforms other
layered engines such as IronJS and Rhino engines while pro-
viding extensibility, adaptability and portability.

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors–Run-time environments

Keywords JavaScript; layered virtual machine; dynamic
languages

1. Introduction
JavaScript is a language in which almost everything is dy-
namically modifiable: it is dynamically typed, object prop-
erties (the JavaScript name for object members) can be dy-
namically inserted and deleted, inheritance hierarchy (via
prototype chains) can be changed dynamically, new code

1Work performed while at Qualcomm Research Silicon Valley.
2MuscalietJS can be found at http://www.github.com/mcjs/mcjs.git

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VEE ’14, March 1–2, 2014, Salt Lake City, Utah, USA.
Copyright c© 2014 ACM 978-1-4503-2764-0 /14/03. . . $15.00.
http://dx.doi.org/10.1145/2576195.2576211

can be injected dynamically, and so on. These properties
make JavaScript application development flexible. However,
they also make compiling JavaScript a significant challenge.
In addition, JavaScript is still a relatively new and evolv-
ing language, requiring an extensible compilation engine to
enable easy exploration of new language features. Adding
language-level compiler optimizations should be easy, espe-
cially in an engine architecture that supports different com-
pilers and optimization levels. JavaScript engines are used
in a variety of environments, from web page loading to web
applications and server processing [14]. As such, an engine
needs to adapt the quality of generated code and the time
spent compiling to the particular workload. Finally, porta-
bility is critical, especially in the browser case, as JavaScript
engines run on a wide variety of platforms.

Given the significant advancements in virtual machines
such as .NET and JVM, both in terms of improved efficiency
and large number of available features, a fundamental ques-
tion is whether we can exploit these VMs to efficiently build
and run a dynamic language like JavaScript in an adaptable
manner. Such an approach can potentially ease new language
feature extensions and improve portability. Concentrating al-
most exclusively on performance, traditional engines [9, 18]
implement the entire dynamic managed runtime using an
unmanaged language such as C or C++. In these engines,
the basic constructs of the dynamic runtime such as object
layout, heap, garbage collector, compilers, profilers and call
frames, have been designed and implemented from scratch
in the low-level language. This approach achieves high per-
formance and requires significant effort. Since everything
is designed together, the monolithic architecture ends up
less extensible, making it more challenging to implement an
evolving dynamic language.

Recently, there have been several efforts [1, 2, 10, 16]
for building a high-level dynamic VM runtime (such as
JavaScript) on top of another low-level VM (such as JVM or
.NET). We call such a runtime a layered runtime. Although a
layered runtime can experience a performance hit due to the
presence of the low-level VM, it can significantly ease de-
velopment and improve extensibility. In this paper, we reex-
amine and reenvision the architecture of layered JavaScript
engines with the goal of providing a flexible and performant

framework for optimization. The specific contributions of
this paper are:
• A new, layered JavaScript engine, MuscalietJS (or MCJS),

for decent performance, rapid prototyping and exploration
of research ideas implemented on top of the .NET com-
mon language runtime (CLR). This architecture is differ-
ent than any previously proposed layered engines such as
SPUR [1], IronJS [10] or Rhino [16] in how it divides
responsibilities between high-level and low-level engines
and achieves better performance (Section 3). JavaScript-
specific optimizations, such as property lookup and type
inference, are performed in the high-level engine (Sec-
tion 4). Code generation and hardware-specific optimiza-
tions are performed at the low-level VM. MuscalietJS ex-
ploits features provided by the low-level VM runtime, such
as Reflection and Runtime Method Attributes, to emit effi-
cient code for hot functions (Section 5).

• Insights into the low-level VM features that will maximize
the performance benefits of the JavaScript runtime with-
out losing generality. Examples include eliminating array
bounds checks on data structures that are either used by
the JavaScript JIT or generated by it, and which are guar-
anteed not to overflow, explicit object initialization, and
avoiding JITed code validation checks (Section 5.3).

• We demonstrate the validity of our approach by comparing
the performance of MuscalietJS to previously proposed
layered engines implemented in managed languages, in-
cluding Rhino [16] and IronJS [10] and also monolithic
engines such as V8 [9] (Section 6). We find that on both
traditional JavaScript benchmarks and several record-and-
replay benchmarks based on real websites, MuscalietJS
significantly outperforms other layered engines such as
Rhino and IronJS (by a factor of 2 to 3), while still sup-
porting extensibility and portability.

2. Design Space of JavaScript Engines
Given the pace of change experienced in web development
and the growing ubiquity of JavaScript, we identify the fol-
lowing criteria for evaluating JavaScript engines:

• Performance. Performance is the key criterion by which
production JavaScript engines are evaluated. Given the
increase in dynamic execution of web pages [15] and the
trend toward web apps, better JavaScript performance in
browsers is increasingly important.

• Adaptability. A JavaScript engine must be adaptable
enough to recognize different workloads, ranging from
server-side [14] to latency-sensitive page-load and itera-
tive hot-spot workloads, and react accordingly to provide
the best possible quality of service.

• Extensibility. The JavaScript language is constantly evolv-
ing both formally, (e.g., the new ECMAScript standard [7]),
and informally [19–21]. This means that JavaScript en-
gines must evolve constantly and must be designed such

that extensions can be added and integrated easily, while
taking advantage of the full feature set of optimizations.
Changes must be localized and modular, and avoid re-
engineering the engine flow.

• Portability. Browsers, and hence JavaScript, are widely
used on many platforms, from desktops to mobile devices;
thus an engine should be easily portable to different hard-
ware architectures. This implies that engines should be de-
coupled from the underlying hardware, treating the hard-
ware interface as a separate concern. However, it is still
critical for performance that an engine take advantage of
any available hardware-specific features.

2.1 Traditional Monolithic Architectures

The traditional engines are designed to achieve the best per-
formance and adapt to different Web workloads. For exam-
ple, the Google V8 JavaScript engine [9] is a native C++
application that has two just-in-time (JIT) compilers and no
interpreter. One is a quick, simple compiler that generates
very fast generic code using inline caches, and the second is
a profile-based optimizing JIT compiler called Crankshaft.
The optimizing compiler applies a wide range of low-level
optimizations such as SSA (Static Single Assignment) re-
dundancy elimination, register allocation, and static type in-
ference when generating native code. It also uses type feed-
back from the inline caches from the simple compiler. V8
does not use a bytecode-based IR (intermediate representa-
tion); instead, it uses both high-level and low-level graph-
based IRs for different levels of optimization. SpiderMon-
key [18], Firefox’s JavaScript engine, is another monolithic
engine written in C/C++ and comprised of a bytecode-based
interpreter, a baseline JIT compiler, and an optimizing JIT
compiler (IonMonkey). The baseline compiler is similar to
the V8 engine’s simple compiler and uses inline caches to
generate fast code.

While these runtimes are usually implemented and com-
piled in a low-level unmanaged language such as C++, they
need to provide complete JIT compilers with several IRs and
optimizations at different levels, and assembly code gener-
ators for all target machines. The compiler stack and the
code generators must be updated frequently to support newly
added language features. Significant development effort is
required to extend and maintain such engines and port them
to new platforms. Researchers have been experimenting with
various JIT compilers in the Mozilla framework, such as the
tracing JIT in Gal et al. [8], and highlight the complexity
of implementing such components in monolithic engines.
Additionally, in these architectures, there is an impedance
mismatch between the runtime call stack (generally C++)
and the call stack of the executing generated code in the
target language (JavaScript). Consequently, communication
between the executing JITed code and the runtime is com-
plex and has high overhead.

Table 1. Traditional vs. Layered JavaScript Engines.
Architecture Name Host Language Compilation methodology LOC
Monolithic V8 C++ Adaptive: Inline-cache based fast compiler wit no IR for cold code; 1M

an JavaScript optimizing compiler (HIR and LIR) for hot code
Monolithic SpiderMonkey C++ Adaptive: A byte-code based interpreter for cold code; 300K

a trace JIT and method JIT for hot JavaScript code

Layered MuscalietJS CLR (C#) Adaptive: an IR-based interpreter implemented in CIL for cold code; 95K
an JavaScript optimizing compiler (implemented in CIL) and
a CIL code generator for hot code

Layered SPUR CLR (C#) Translate JavaScript to CIL; leaves dynamic optimizations to tracing CIL JIT N/A
Layered IronJS DLR (F#) Translate JavaScript to DLR; leaves dynamic optimizations to DLR 23K
Layered Rhino JVM (Java) Non-adaptive but can be reconfigured ahead of time (AOT); 115K

supports various degrees of optimizations (interpreter to optimized code)

2.2 Layered Architectures

In layered JavaScript (also called Repurposed JIT) archi-
tectures, the target dynamic runtime is built on top of an-
other runtime engine, rather than building an entire compiler
from scratch. These designs are typically more portable than
monolithic ones, as hardware-specific optimizations and
functionality are provided by the low-level VM. Addition-
ally, the target runtime may take advantage of features and
resources provided by the host runtime including object lay-
out, garbage collection and code generators. Therefore, these
designs can better fit the quick development cycles needed
for evolving dynamic languages. For example, as shown in
Table 1, the code size for these architecture is significantly
smaller (up to 10x) than the code size of traditional engines.
Adding new features to the layered engines is usually easier.
For example, adding support for parallel execution or par-
allel compilation to monolithic engines is a significant task
as it requires major changes to the memory system, garbage
collector and runtime. Whereas, basic parallelism support in
a layered engine that runs on top of .NET for example, such
as MuscalietJS, can be provided using Task-Parallel Library
(TPL) already available in the .NET runtime.

Table 1 compares MuscalietJS against three common lay-
ered JavaScript engines and two traditional engines. Mus-
calietJS is a layered JavaScript engine architecture built on
top of the .NET Common Language Runtime (CLR). Most
other layered engine provide a thin layer on the top and
rely on the low-level engine to provide the optimizations.
MuscalietJS, however, implements many language-level op-
timizations at the high-level, where the semantics of the
language allows for better decisions. And it delegates the
traditional compiler optimizations to the low-level engine
(e.g. register allocation). MuscalietJS performs adaptive
JavaScript-specific optimizations and uses CIL code gen-
eration to JIT optimized versions of hot function after ap-
plying high-level JavaScript optimizations. These high-level
optimizations include hidden classes, property lookup, type
analysis, and restricted dataflow analysis. MuscalietJS also
exploits special features in CLR runtimes to generate high-

performance optimized code. For example, MuscalietJS uses
reflection and inlining hints to generate optimized code for
dynamic JavaScript operations. MuscalietJS communicates
special hints to the CLR engine to avoid array-bounds checks
and object initialization for JavaScript property access and
JavaScript object creation.

SPUR [1] is a tracing JIT compiler for Common In-
termediate Language (CIL) in which JavaScript is directly
compiled to CIL and CIL is trace-compiled by SPUR for
better optimization. The authors show that tracing CIL gen-
erated by compiling JavaScript programs gives similar per-
formance gains to a JavaScript tracing compiler. Due to the
modular nature of our engine, we believe that it is possible
for MuscalietJS to run on top of any CIL compiler including
SPUR. Given the effectiveness of SPUR over Microsoft’s
.NET runtime, MuscalietJS might benefit from it; unfortu-
nately, SPUR is not available for general use and thus we
could not test this setup. IronJS [10] translates JavaScript
to Dynamic Language Runtime (DLR) expression trees [5]
and leaves dynamic optimizations to the DLR. DLR uses
the concept of dynamic callsites to generate type specialized
versions of each operation. This is similar to polymorphic
inline caches. Rhino [16] is a JavaScript engine on top of the
JVM which offers various levels of optimization. The default
configuration of the runtime invokes a naı̈ve bytecode-based
interpreter written in Java. Other optimization levels invoke
a code generator that generates Java class files. When set
to the highest optimization level, Rhino performs optimiza-
tions such as detection of numerical operations, common
sub-expression elimination, and function call target caching.
Though the current implementation lacks adaptive compi-
lation, optimizations can be enabled or disabled ahead of
time. Nashorn [13] is a more recent implementation of a
JavaScript runtime on the JVM. Nashorn uses the invoke-
dynamic bytecode instruction, which was added to recent
versions of the JVM to enable efficient implementation of
dynamic language runtimes. We were not able to find a per-
formant version of Nashorn to compare against.

Some prior studies [2] have stressed the importance of
having matching semantics of the two layers. We believe se-

mantics of the low-level VM might be of some importance
but the overall architecture and work breakdown between
high-level and low-level VMs are more important. For exam-
ple, by moving JavaScript optimizations (similar to the one
explained in Section 4) to the high-level engine, it is possi-
ble to achieve significant speedups regardless of the seman-
tics of the lower-level language. As our results show while
semantics of DLR used by IronJS are relatively close to dy-
namic languages such as JavaScript, with better engineering
MuscalietJS outperforms IronJS.

3. MuscalietJS Architectural Overview
MuscalietJS’s architecture is shown in Figure 1. It splits
responsibilities across two levels: a JavaScript-specific en-
gine and a language-agnostic low-level VM. In principle,
any managed language VM can serve as the low-level en-
gine. Our current implementation uses the Common Lan-
guage Runtime (CLR), as implemented by Mono [12]. The
low-level VM provides traditional compiler optimizations:
instruction scheduling, register allocation, constant propa-
gation, common subexpression elimination, etc., as well as
code generation and machine specific optimizations. In addi-
tion it provides managed language services such as garbage
collection, allowing us to focus on the JavaScript-specific
aspects of the engine.

The JavaScript specific layer is further decomposed into
several components:

• JavaScript runtime. The high-level runtime consists of
a parser, an interpreter, a parallel JIT compiler, and a pro-
filer. The parser takes in JavaScript code and produces
a custom IR (see Sec. 4.1). The interpreter executes the
IR directly, while the JIT compiler applies JavaScript-
specific transformations and optimizations, and generates
CIL bytecodes for hot functions. Some examples of per-
formed optimizations are: type analysis and type infer-
ence, array analysis, and signature-based specialization;
these are further discussed in Section 4.
The combination of interpreter, JIT, and profiler provides
adaptability in our design by deciding which compila-
tion path is more appropriate given the workload. For
latency-sensitive scenarios, like browser page load, we
provide an interpreter which can directly execute the out-
put of the parser without any intermediate bytecode gen-
eration. As functions are invoked multiple times and be-
come hot, the JIT compiler will optimize them since
the compilation time can be amortized. For the hottest,
most performance-sensitive code, we apply more expen-
sive optimizations at both the high-level JavaScript en-
gine layer and the low-level VM layer.

• Dynamic runtime. The dynamic runtime provides the
necessary support to enable compilation for dynamic,
prototype-based languages. This includes dynamic val-
ues, objects, types, and hidden classes.

JavaScript

MCJS

Common	
 Language	
 Run5me	
 	

(CLR:	
 Mono/.NET)

ARM	
 /	
 x86

Code	
 Gen,	
 Garbage	

Collec5on

Dynamic	
 Run5me

Basic	
 support	
 needed	
 for	
 dynamic	
 languages
(Dynamic	
 Objects,	
 Types,	
 Hidden	
 classes)

Web	
 Run5me
(Browser	
 DOM	
 Bindings,	
 HTML5	
 APIs,	
 JS	

Events,	
 Timers,	
 etc.)

JavaScript	
 Virtual	
 Machine	

	

	

	

	

	

	
 	

Web	

JavaScript

IR	

CIL	
 JIT

Parser

Interpreter

CIL
 JavaScript	

Op5miza5ons

Cm
d	

lin
e	

Ja
va
Sc
rip

t

Hot	
 func	
 	

CIL	
 &	
 hints

Figure 1. MuscalietJS Architecture.

• Web runtime. The web runtime handles the integration
with the browser. MuscalietJS was designed in concert
with a browser architecture [?] to optimize the bindings
between the browser and the engine. The web runtime
understands the semantics of the DOM and implements
DOM bindings as well as other browser-related services
like events and timers.

Running the JavaScript engine inside another VM has
performance implications. Our split design relies on JavaScript
specific optimizations at the high-level to help mitigate the
overhead of running on the CLR. The JavaScript engine code
generator exploits advanced high-level techniques combined
with type analysis and special hints to lead the low-level VM
to generate high-quality optimized code. There are perfor-
mance advantages to running on top of the CLR.

4. JavaScript Specific Optimizations
This section discusses JavaScript-specific optimizations ap-
plied to the input JavaScript code in the JavaScript runtime
(JSR) and dynamic runtime (DR) components.

4.1 Parsing and IR Generation

The MuscalietJS engine uses a graph-based intermediate
representation (IR) that describes JavaScript code using sim-
ple operations that are easy to analyze. The IR describes the
flow of data through operations by placing edges in the graph
between expressions that generate values (Writers) and ex-
pressions that use those values (Users). It also represents im-
plicit operations like type conversions explicitly so that they
can be taken into account during later phases. This simplifies
the implementation of analyses like type inference. The in-
terpreter, optimization passes, and code generator all operate
using this IR.

We depart from common practice when constructing the
IR. Rather than building a temporary abstract syntax tree
(AST) which is then used to build the IR in a separate pass,
the parser directly generates the IR. The structure of the IR
is designed such that constructing it also performs some of
analyses. For example, dataflow analysis is performed com-
pletely at parse time by connecting Writers and Users as
they are constructed. We build a symbol table for each func-
tion and determine useful metadata like whether the func-
tion uses eval or closes over its environment. This has sig-
nificant advantages in the context of a latency-sensitive sys-
tem like a web browser: it reduces the number of passes, im-
proves locality (since multiple passes are fused), and elim-
inates the overhead of constructing temporary AST nodes
that will later be discarded. The disadvantage is the com-
plexity involved in implementing the semantic actions of the
parser. To address it, we separate the parser’s view of the IR
from that of the IR factory which constructs the IR nodes.
From the parser’s perspective, we maintain the illusion that
we are building an AST that follows the structure of the EC-
MAScript 5 [7] grammar very closely, by tagging the real
IR node classes with empty interfaces corresponding to non-
terminals in the grammar. These interfaces have no effect
at runtime, but they provide static type-level constraints that
make it easier to ensure the parser behaves correctly when
constructing the IR graph. They also hide the complexity of
the underlying graph nodes by presenting the parser with a
simple, uniform interface. The IR factory, meanwhile, works
with the concrete IR node types, and does not concern itself
with the structure of the grammar at all.

Since there is such an impedance mismatch between the
grammar and the IR, we cannot always hide the truth from
the parser perfectly. However, by obeying two requirements
when designing the IR and the factory code that constructs
it, we were able to isolate these issues to a few small parts
in the parser. One requirement was that the IR could be
constructed in a recursive fashion, matching the parser’s
algorithmic structure. This was fundamentally needed to
allow the construction of the IR without using a separate
pass. We also needed to allow the parser to backtrack in
certain circumstances. To support this, we required that the
IR factory act only on local state stored within the IR nodes
themselves, so that IR subgraphs could be thrown away
without corrupting global data structures. The combination
of these constraints also has another advantage: the designs
of the parser and the IR factory lend themselves nicely to
parallelism. We leave further exploration of that approach
for future work. Once the IR for a parsed function is created,
it can be used by the interpreter to run the function or by the
CIL JIT engine to apply type optimizations and eventually
generate optimized code.

4.2 Adaptive Function-level Execution

To achieve adaptability and performance, traditional JavaScript
engines support different modes of execution (interpretation,

basic JIT and advanced JIT with specialization) at function
granularity. For example, V8 first quickly generates an unop-
timized version of the code for each function. After a certain
number of executions a trampoline code section replaces
the code pointer with a runtime function that generates a
heavily optimized version of the code. The code pointer is
then changed to point to the optimized code. It remains in
this state unless the assumptions made during optimization
prove false, in which case a deoptimization happens which
restores the unoptimized code.

Providing this type of dynamic code adjustment (espe-
cially across the runtime function and JITed code) requires
access to stack frames, control over stack semantics, and
sometimes support for self-modifying code. This is hard to
achieve in a layered design given the restrictions imposed
by host VMs like the CLR. We therefore take a different
approach to achieve the same degree of adaptability. Each
JavaScript function object in MuscalietJS has a codePtr: a
function pointer (C# delegate) that takes as its only argu-
ment a CallFrame object. The CallFrame includes a refer-
ence to the function object for that function as well as the
actual input arguments and their types. A codePtr can point
to different runtime functions that manage the execution and
optimization of the function, or to different JITed specializa-
tions of the function. Each JavaScript function object also
stores function metadata, which includes the current compi-
lation state of the function (parse, analyze, JIT, specialized
JIT), the IR graph of the function, and a code cache to store
the function’s JITed CIL code. The codePtr of a JavaScript
function can point to one of the following functions:

• FirstExecute (runtime function): When the JavaScript
function is called by the JavaScript code for the first time,
this function performs pre-JIT analysis and the initializa-
tion of the JIT code cache for that function. At the end, the
codePtr is changed to point to another runtime function
responsible for normal execution.

• NormalExecute (runtime): Depending on the status of
the JavaScript function, the normal execution function ei-
ther calls the interpreter (for “cold” functions) or JITs the
function at one of several optimization settings.

• Interpret: The interpreter executes the function by travers-
ing its IR graph and calling runtime functions that imple-
ment operations, property lookup, and other JavaScript
semantics.

• CIL JITed code: For hot functions, normal execution
starts the JIT to generate a specialized version of the func-
tion for the current arguments’ types. The generated code
will be added to the code cache and codePtr will be up-
dated to point to it.

Tight coupling between the target and host runtime allows
low overhead switching between interpreter and JIT code
similar to traditional monolithic runtimes.

4.3 Type Analysis

Advanced monolithic engines employ type analysis to JIT
efficient code for hot functions. MuscalietJS also imple-
ments an advanced type analysis by combining type feed-
back and type inference before JITing optimized code for
hot functions. An initial type inference pass is first applied
to reduce type feedback overhead by enabling more intelli-
gent placement of profiling hooks. After profiling, when a
hot function is detected in the next invocation of that func-
tion, a second type inference pass uses the profiling type in-
formation to infer the types of most variables or expressions
in the function.

MuscalietJS supports type signature-based method dis-
patch for JavaScript. The basic concept is to dynamically
generate different JITed implementations of the same func-
tion, each specialized for one observed signature [4], i.e.
the types of the function’s arguments for a particular invo-
cation. At each invocation of the method the current signa-
ture is used to dispatch to an appropriate implementation.
The type analysis and signature-based method dispatch al-
gorithm used by MuscalietJS is similar to the type inference
and analysis explained in [11].

4.4 Property Lookup

As in any dynamic runtime, the way objects and their fields
are stored in memory affects the performance and efficiency
of the memory allocation and object and field accesses [3]. In
monolithic engines such as V8 [9], object layouts are com-
plex and tightly coupled to the garbage collector, imposing a
huge burden on extending the engine with new object types
and features. For JavaScript, engines also have an internal
data structure representing the implicit class of each object
at a given point during execution, known as a hidden class
or map. The hidden class of an object can change at any
point given the dynamic nature of the language. This affects
the way optimizing compilers generate efficient JITed code,
and the JIT must take this layout into account in order to
provide efficient property lookups using low-level optimiza-
tions such as inline caches. In MuscalietJS, both JavaScript
objects and their hidden classes are normal CIL objects.
Adding new features is easy, since it requires no translation
between layers. This extensibility does not come at the cost
of speed; the MuscalietJS representation is capable of fast
property lookups using techniques like multi-level caching
and property propagation. The same lookup mechanism is
used directly by the interpreter and the JIT engine in the JSR.

MuscalietJS employs a data structure for representing
hidden classes that is customized for prototype-based lan-
guages. In such languages, objects act as multi-level dictio-
nary, where each level adds or replaces properties and in-
herits the rest from another object, its prototype. Since an
object may both be a prototype and have a prototype of its
own, a prototype chain is formed. The prototype chain is
highly dynamic in nature because any of the objects forming

PDescp PDescp
[x,0]

PDescp
[z,1]

z
x

….

Fields

HClass

Children

…
h

….

Fields

Children

Proto

Root

MapMetaData
LocalCache

Inherited PDs

Pa
re

nt

Root

Obj2

ProtoObj

MapMetaData
LocalCache

Inherited PDs

PDesc

PDescp
[y,1]

y
x

….

Fields

HClass Obj1

PDescp
[h,0]

HClass

IPDescp
[h,0,ProtoObj]

Children

Global Cache

HClass PDescp
… …
… …

PropID for “x”

Cache hit situation for Obj2.x

Figure 2. Property description data structure for represent-
ing hidden classes (maps) in MuscalietJS DR.

the chain may be changed at any time. To address the chal-
lenge of inferring hidden classes from these chains of objects
at runtime, we use a data structure with a tree of property
descriptors at each level of inheritance or prototype depth.
Each node in the tree represents an owned property – that
is, a property which is set directly on the object rather than
being inherited. Each property descriptor includes the prop-
erty name and the offset at which the corresponding field
is stored in the objects that share this prototype. Every path
from a node to the root of the tree represents the fields of
an object in the order they were added. Each node thus cor-
responds to a particular hidden class, shared by all objects
whose fields were constructed in the same manner. This data
structure makes it easy to keep the inferred hidden class of
an object up to date as properties are added at runtime. The
root of the tree has no property info. Therefore, the root node
alone represents any object with no properties of its own.
Note that such an object may still inherit properties from its
prototype chain.

All of the property descriptors in a tree share a map meta-
data structure that includes a reference to the prototype ob-
ject, a list of properties inherited through the prototype, and
a cache for recently accessed property descriptors. Figure 2
shows an example of the two-level map data structure used
by MuscalietJS for managing dynamic objects and proper-
ties. In this particular example, the prototype has one field
called ”h”. Objects Obj1 and Obj2 inherit ”h” from that
prototype and add { ”x”, ”y” } and {”x”, ”z”}, respectively
as sets of owned fields stored directly on each object.
Slow Path Lookup: The default process for looking up a
property name in an object (e.g. obj1.x in Figure 2) includes
walking the tree of property descriptors, starting at the node
corresponding to the hidden class (map) of the object and

continuing towards the root of the tree. If a property descrip-
tor with the desired property name is found, the value is re-
trieved from the field at the corresponding offset in the ob-
ject. Otherwise, the search is continued on the next object in
the prototype chain. For instance, looking up obj1.h in Fig-
ure 2 will cause the property descriptors to be walked start-
ing from Obj1 until the root property descriptor is reached.
Since the property won’t be found, this will be followed re-
cursively by a walk of ProtoObj’s property descriptors (since
ProtoObj is the prototype of Obj1), eventually reaching the
property descriptor for ”h”. To reduce the cost of future
lookups, when a lookup on an object results in an inher-
ited property being found, an inherited property descriptor
is added to the map metadata structure at the object’s pro-
totype depth. The inherited property descriptor indicates the
prototype object that owns the property and the offset of the
corresponding field in the prototype object.
Fast Path Lookup: MuscalietJS employs two levels of
caching to speed up the property lookup process: a global
cache shared between all hidden classes and objects and a
cache at the map metadata level. For faster lookups in these
caches, the MuscalietJS runtime globally assigns an integer
ID (called a propID) to each statically known string prop-
erty name and manages the propIDs during code generation
and use these IDs to access these caches for known property
names. The global cache is a small array, indexed by the
low-order bits of the propID, that contains tuples composed
of a hidden class (identified by a node in the tree of prop-
erty descriptors) and the last property descriptor retrieved
for that propID. If the looked up hidden class matches the
hidden class of the object on which we are performing the
lookup, then the property descriptor is still correct and can
be used to access the corresponding value. A global cache
hit for Obj2.x (or any other object with the same hidden
class accessing property ”x”) is shown in Figure 2. If there
is no hit in the global cache, we check a second-level cache
associated with the map metadata of that object (for exam-
ple the cache in Obj1.HClass.MapMetadata for Obj1 in the
example). This map metadata local cache similarly maps a
property name to the last property descriptor matched for
that name and the hidden class the match was for. While
slower, this cache achieves better locality than the global
cache given that it is limited to the hidden classes associated
with a particular map metadata.

If the propID cannot be obtained for a property statically,
the generated code bypasses the cache and uses the runtime
property name as a string through the slow lookup path.
Using these compile time assigned propIDs, the caching
overhead is significantly reduced. Some engines, such as
V8 [9], use transient maps for representing hidden classes
and use inline caches for fast property lookup and requires
deoptimization in case of inline cache miss. MuscalietJS’s
hidden class model requires a tree walk for cache misses
and is amenable to property caching at the runtime level.

Also it uses two levels of caching and the results in Section 6
report good hit rates for different types of workloads using
this mechanism.

5. CIL Code Generation for Hot Functions
In JavaScript, most operations are dynamically defined de-
pending on the types of their operands. For example, a prop-
erty load operation such as object.a can turn into a direct
field access in object, a field access in object’s prototype
chain, a call to a getter function call, or a call back to a
browser function. A binary addition can translate to integer
or double addition, a string concatenation or a complicated
user-defined conversion on operands followed by a numeri-
cal addition or a concatenation, depending on the value types
of the operands.

Given the heavy use of the dynamic operations in JavaScript
(and most other dynamic languages), generating efficient
code based on the inferred or profiled types is very important
when JITing code for hot functions. With the large number
of variants for each of these operations, producing low-level
code for all of the variants, as is done in traditional engines,
is challenging and hard to debug. MuscalietJS exploits the
rich features of the host engine such as reflection and special
code-generation hints to JIT efficient code while maintain-
ing scalability and debuggability. This section discusses how
MuscalietJS performs code generation for operations in hot
functions.

5.1 Operation Implementation

Initially, we generated the CIL bytecode implementing each
operation manually; there were many variations depending
on the operand type information extracted during type in-
ference. However, this approach is very tedious and hard
to maintain because the relationships between the input
and output types of the operations and their corresponding
implementations were separated and implicitly captured in
multiple places, including the type inference and JIT algo-
rithms. Debugging was also very difficult.

To address these problems, we created an operation
database. This is essentially a series of overloaded functions,
each implementing one particular instance of an operation’s
behavior. During type inference, we use reflection to map
operand types (function argument types) to operation result
types (function return value types). During JIT we again use
reflection to look up the appropriate operation implementa-
tion function based on the types of the operand and simply
generate a call to that function. Figure 3 (B) shows a simpli-
fied code for binary addition operator for three of the pos-
sible many cases including (Int, Int), (Undefined, Bool) and
(Bool, Float) in the MuscalietJS operation code database.

This approach produces very robust, maintainable, and
easy to debug code. Since we use reflection to take advan-
tage of the overloading functionality of the host language,
we do not even need to generate lookup code. By assigning
proper CIL method attributes to these operator implementa-

/**** (A) CodeGen for binary operations ***********/
Visit(BinaryExp node, OpCache operation)
{

var ltype = Visit(node.Left);
var rypet = Visit(node.Right);
/* Using reflection to extract the expected type and call*/
var methodInfo = operation.Get(ltype, rtype);
var resultType = operation.ReturnType(ltype, rtype);
GenerateCall(methodInfo, resultType);

}

/**** (B) Addition operation ***********/
public static class Add
{

...
[MethodImplAttribute(MethodImplOptions.AggressiveInlining)]
public static float Run(bool i0, float i1)
{ return Run((float)Convert.ToNumber.Run(i0), i1); }
...
[MethodImplAttribute(MethodImplOptions.AggressiveInlining)]
public static double Run(mdr.DUndefined i0, bool i1)
{ return double.NaN; }
...
[MethodImplAttribute(MethodImplOptions.AggressiveInlining)]
public static int Run(int i0, int i1) { return i0 + i1); }
...

}

Figure 3. CodeGeneration (JIT) code for binary operation
IR nodes (A) and Addition operation implementation (B).

tion functions, the runtime is forced to inline them, and the
compiled code achieves the same performance as the previ-
ous manually-generated CIL bytecode implementation. We
developed a template-based code generator to generate most
of the C# code for the various possible implementations of
each operation, and used the “partial classes” feature of the
C# language to manually implement the corner cases and in-
tegrate them with the rest of the auto-generated code.

5.2 CIL Code Generation

The MuscalietJS code generator (JIT engine) traverses the
IR of the function being JITed and uses information added
to the IR during type inference or other pre-JIT phases to
generate efficient CIL code. This section discusses some of
the techniques used by the engine and how it interacts with
the low-level VM to achieve high performance.

The engine generates CIL for JavaScript code using the
CLR’s reflection API. The various JavaScript-level expres-
sions are implemented by generating calls to appropriate op-
eration functions specialized for the inferred types of their
operands as shown in Figure 3. To show how our code gen-
erator uses operand types and hints to the low-level VM to
help the underlying platform generate efficient code, Fig-
ure 4 illustrates: (A) a sample JavaScript function, (B) its
corresponding CIL code generated by MuscalietJS and, (C)
the x86 code generated by the low-level engine. The call to
the doublePlusOne function shown in the figure passes
an Int value (a) as argument, and the literals in the func-
tion are all integer constants. Therefore, the type inference
pass infers the type of the operands to both the multipli-

/********* (A) JavaScript Source ***********/
function doublePlusOne(a)
{

return 2 * a + 1;
}
doublePlusOne(20)
............
/*** (B) Generated CIL code for doublePlusOne ***/
............
0.0 ldarg.0 ;loading call frame
1.1 ldflda ;loading arg0 in callframe (a)
2.1 call Int32 DValue:AsInt32 () ;unboxing arg0
2.2 stloc.1
3.0 ldarg.0
4.0 ldflda
5.1 ldc.i4 2
5.2 ldloc.1
5.3 call Int32 Binary.Mul:Run (Int32, Int32)
6.1 ldc.i4 1
6.2 call Int32 Binary.Add:Run (Int32, Int32)
7.0 call Void DValue:Set (Int32) ;boxing for return
............
/*** (C) x86 assembly code generated by mono ***/
............
0 addl $0x10,%esp
1 leal 0x34(%edi),%eax ;load arg0 (a)
2 movl 0x04(%eax),%ecx
3 movl %ecx,0xf4(%ebp)
4 leal 0x0c(%edi),%eax
5 shll %ecx ;inlined/optimized integer multiply
6 incl %ecx ;inlined/optimized integer addition
7 movl %ecx,0x04(%eax) ; boxing for return
8 movl $0x00000009,(%eax)
9 leal 0xfc(%ebp),%esp

Figure 4. JITed CIL and assembly for a sample code.

cation and addition operations to be Int. During JIT com-
pilation, as shown in Figure 3, the JIT engine uses reflec-
tion to look up the multiplication and addition functions for
(Int, Int) operands. The resulting functions, which are called
in the JITed code (CIL lines 5.3 and 6.2), are the basic in-
teger addition and multiply functions Binary.Mul:Run
and Binary.Add:Run, which are implemented in terms
of CIL-level primitive operations. Since these functions re-
turn Int as well, the intermediate value passing the multipli-
cation result to the addition operation is inferred to be an Int
as well, and so it does not generate any boxing or unboxing
operations. All the operations in the function are pure inte-
ger operations except the unboxing of the function argument
read from the call frame (CIL line 2.1) and the boxing for
the return (CIL line 7.0).

When the low-level VM sees this specialized version of
doublePlusOne, it is guaranteed to inline the calls to
Binary.Mul:Run, Binary.Add:Run, and the runtime
functions that handle boxing, because we annotate them with
CIL attributes that require this behavior (AggressiveInlin-
ing). After inlining, the calls are replaced with simple inte-
ger + and * operations. The low-level VM then applies other
optimizations such as dead code elimination, register alloca-
tion, and constant folding on the resulting code. Finally, opti-
mized code is generated for the target hardware architecture.
For example, as shown in Figure 4, the x86 generated code
implements the multiplication and addition operations in the

original JavaScript function with a shift left instruc-
tion and an increment instruction.

We implement property access expressions (the . opera-
tor) at the JavaScript level with calls to the property lookup
runtime operation discussed in Subsection 4.4. These calls
are also inlined by the low-level VM. For indexing opera-
tions (the [] operator), MuscalietJS performs special opti-
mizations: if the inferred type of the expression that is being
indexed is Array, and the indexing expression’s inferred type
is Int, then we can skip the property lookup code and cache
accesses. Instead, the engine generates a simple array access,
using the integer to directly index the internal CIL-level ar-
ray used to implement the array object.

In traditional JavaScript engines, calls to runtime func-
tions from the JITed code is usually very costly, given that
the runtime is unmanaged while the JITed code exists in a
managed environment. The primary source of overhead is
the difference in stack frame models between the two envi-
ronments. In the MuscalietJS runtime, however, JavaScript
objects, the runtime, calls to operations, boxing and unbox-
ing, and JITed code all exist in the same managed world and
so communication between them has essentially no over-
head. As shown, MuscalietJS effectively exploits this low-
overhead during CIL code generation for hot functions.

5.3 Special Hints

Through significant profiling and evaluation of the Mono
and .NET VMs, we designed a set of hints that can be
passed to the low-level VM to significantly improve the gen-
erated code in a layered architecture like MuscalietJS. Most
of these hints can be provided as per-value or function at-
tributes passed to the runtime once. We were able to imple-
ment some of these features in the Mono runtime:

• Avoiding array bound check for property access opera-
tions: MuscalietJS can guarantee the validity of the length
of the property array in the objects through hidden classes,
so the low-level code that would be generated by the low-
level .NET VM for those checks is redundant.

• Avoiding object zero initialization for JavaScript ob-
jects created by MuscalietJS: MuscalietJS explicitly sets
the fields of JavaScript objects after creating them in JITed
CIL codes.

• Avoiding IL validation security checks for CIL code
emitted by MuscalietJS: We found that the Microsoft
.NET runtime [6] spends a huge amount of time on secu-
rity validation of our JITed CIL code. Our profiling shows
that with .NET, Sunspider benchmarks are slowed on av-
erage by 2× (and sometimes as much as 5×) because of
the JIT method access check done on every invocation of
MuscalietJS generated code for hot methods. This is ob-
served in the .NET runtime, but we did not observe this is-
sue with the Mono runtime [12]. This security check is re-
dundant because MuscalietJS performs code validation for
type safety during code generation. We were not able to fix

this issue and so could not fully evaluate MuscalietJS on
.NET. Having a selective IL validation check can improve
the code quality of layered designs such as MuscalietJS.

• Allowing on-stack replacement (OSR) between two
CIL emitted methods: As MuscalietJS employs type
profiles as well as type inference, it sometimes generates
speculative code protected by guards. As a result, it needs
support for deoptimization and jumps back to the inter-
preter if the guard condition is violated. Switching con-
texts between the optimized method and the interpreter
and continuing execution is a challenging task given the
current limitations of the CIL stack machine. Since both
Mono and .NET internally support OSR, having high-level
access to that feature would have simplified the implemen-
tation of such a deoptimizer.

6. Evaluation
We evaluated MuscalietJS against three existing JavaScript
engines: Rhino [16] and IronJS [10], which both have lay-
ered architectures (one running on top of JVM and the
other one on top of .NET DLR) similar in some respects to
MuscalietJS (MuscalietJS performs many more high-level
JavaScript-specific type analysis and optimizations), and
V8 [9], which is a state-of-the-art native engine. We were
not able to evaluate against SPUR [1] as SPUR is not pub-
licly available. We used the latest release of each engine as
of this writing: Rhino v1.7, and IronJS v0.2.0.1. Our engine,
MuscalietJS v0.9, and IronJS run on top of Mono 2.10. All
experiments were carried out on a 2.80GHz Intel Core i7
machine with 8 GB of RAM, running Ubuntu 11.04.

Table 2. JavaScript Engines Configurations.
Name Description
MCJS I MuscalietJS interpreter only
MCJS J MuscalietJS JIT
MCJS J+ MuscalietJS JIT + type inference/specialization and

array optimization
MCJS IJ MuscalietJS interpreter/JIT for cold/hot functions
Rhino I Rhino interpreter only
Rhino C Rhino basic compiler (-O 0)
Rhino C+ Rhino compiler with maximum optimizations (-O 9)
IronJS IronJS translates to DLR expression trees, DLR performs

dynamic optimizations
Our test configurations are described in Table 2. Note

that Rhino does not JIT code on a per-function basis as
MuscalietJS does; instead, depending on its configuration,
it is either a pure interpreter or a pure AOT compiler. To
reduce variation, we run each benchmark four times on each
engine and average the execution times. For the results, we
measured confidence intervals of 1%, 2%, 5%, and 2% for
V8, Rhino, IronJS, and MuscalietJS, respectively.
Benchmark Selection: Selecting the right set of bench-
marks across all platforms and configuration was challeng-
ing. Rhino and IronJS fail to execute JSBench [17] bench-
marks and several Octane benchmarks require typed arrays

0	

10	

20	

30	

40	

50	

60	

70	

3d
-­‐cu
be
	

3d
-­‐m
orp
h	

3d
-­‐ra
ytr
ac
e	

ac
ce
ss-­‐
bin
ary
-­‐tr
ee
s	

ac
ce
ss-­‐
fan
nk
uc
h	

ac
ce
ss-­‐
nb
od
y	

ac
ce
ss-­‐
ns
iev
e	

bit
op
s-­‐3
bit
s-­‐b
its
-­‐in
-­‐by
te	

bit
op
s-­‐b
its
-­‐in
-­‐by
te	

bit
op
s-­‐b
itw
ise
-­‐an
d	

bit
op
s-­‐n
sie
ve
-­‐bi
ts	

co
ntr
olfl
ow
-­‐re
cu
rsi
ve
	

cry
pto
-­‐ae
s	

cry
pto
-­‐m
d5
	

cry
pto
-­‐sh
a1
	

da
te-­‐
for
ma
t-­‐x
pa
rb	

ma
th-­‐
co
rdi
c	

ma
th-­‐
pa
rB
al-­‐
su
ms
	

To
tal
	

Re
la
%v

e	

sp
ee
du

ps
	
 a
ga
in
st
	
 R
hi
no

_I
	

Rhino_C	
 Rhino_C+	
 MCJS_I	
 MCJS_J	
 MCJS_J+	
 IronJS	
 V8	

124.6	
 160.7	
 176.6	
 167.8	

Figure 5. Relative speedups against Rhino I for Sunspider benchmarks.

not yet supported by MCJS. We present results for the Sun-
spider and V8 benchmark suites. We run each test in loop
4 times to increase the running time and improve the confi-
dence of our results.

In addition we want to capture workloads that are char-
acteristic of web page loading, in which large amounts of
JavaScript code are downloaded, but only small portions are
executed most of the time, and these portions are usually
only executed once [15]. To evaluate these types of work-
loads, we generate a set of benchmarks using a record-and-
replay mechanism. For a given web page, we record the
process of loading the web page in the browser. Then, our
benchmark generation tool reconstructs all the JavaScript
code locally, modeling the DOM-based interaction between
the browser and the JavaScript engine as follows: prefix
each script with additional code that initializes a simulated
DOM tree represented by a tree of JavaScript objects, each
of which has the same properties that were read from their
real counterparts during execution. The performance over-
head introduced by the simulated DOM tree is similar to the
browser-integration, as the JavaScript side of the DOM bind-
ings also wraps native objects and accesses them in the man-
aged JavaScript heap.

6.1 Traditional Benchmarks

Figure 5 presents average execution time for the Sunspi-
der benchmark suite on the configurations of MuscalietJS,
Rhino, and IronJS listed in Table 2. The last column (total)
shows the total Sunspider score speedup, also relative to the
Rhino interpreter. A few benchmarks crash on IronJS run-
ning with Mono; therefore we present 18 benchmarks run-
ning correctly on all platforms. The IJ and IJ+ results for
MuscalietJS are very close to I and J+ so the table does not
include them. On Sunspider, the MuscalietJS interpreter (I)
performs close to the Rhino AOT compiler (C). The Mus-
calietJS JIT (J) improves performance over the MuscalietJS
interpreter by a factor of 2 to 3, and delivers almost 3×
the performance of the Rhino AOT compiler at its maxi-
mum optimization level (C+), despite the overhead of JIT-
ing code at runtime. This is slightly higher than the speedups

achieved by IronJS using .NET DLR. This is not surprising,
since we implemented hidden classes and property lookup
directly in the managed runtime using its internal data struc-
tures. In addition, when we enable JavaScript-specific type
optimizations, such as array optimization and type analysis
(J+), MuscalietJS outperforms IronJS (1.3× on average up to
4× on some benchmarks such as access-nsieve). The speed
ups over Rhino C+ is about 4×. These significant speedups
emphasize the effectiveness of our JavaScript-specific opti-
mizations such as property lookup, array optimizations and
type analysis. On average MCJS J+ achieves about 75% of
the speed of the V8 engine on Sunspider benchmarks, which
is by far the highest reported performance for a layered en-
gine.

Table 3. Speedups vs. Rhino I for V8 benchmarks.

Benchmark
Rhino MCJS

IronJSC C+ I J J+

deltablue 3.05 2.69 1.37 2.50 3.78 1.53
navier-stokes 5.43 7.93 1.42 5.84 10.62 4.20
regex 1.22 1.19 0.56 0.59 0.58 0.58
richards 2.17 2.20 1.55 3.05 3.09 1.90
splay 2.50 2.40 1.25 1.49 1.48 2.10

Average 2.88 3.28 1.23 2.69 3.91 2.06

Table 3 presents average execution time for a subset of the
V8 benchmark suite that runs on all of MuscalietJS, Rhino,
and IronJS configurations. Rhino AOT compiler performs
very well, achieving an average speed up of 3.8 compared
to Rhino interpreter, since for these long-running bench-
marks, the compilation time is negligible and several static
optimizations pay off. On the other hand, the MuscalietJS
optimizing CIL compiler, relies on JavaScript-specific opti-
mizations and outperform both IronJS and Rhino best con-
figurations. On average, the best MuscalietJS configuration
(MCJS J+) outperforms the IronJS and Rhino best configu-
rations by about 2× and 1.2×, respectively. The two slow
benchmarks for MuscalietJS are Splay and Regex. Splay
stresses garbage collector and the slowdown can be related

function nsieve(m, isPrime) {
var i, k, count;
for (i=2; i<=m; i++) { isPrime[i] = true; }
count = 0;
for (i=2; i<=m; i++){

if (isPrime[i]) {
for (k=i+i; k<=m; k+=i) isPrime[k] = false;
count++;

}
}
return count;

}
function sieve() {

for (var i = 1; i <= 3; i++) {
var m = (1<<i)*10000;
var flags = Array(m+1);
nsieve(m, flags);

}
}
sieve();

Figure 6. access-nsieve sunspider benchmark.

to the Mono garbage collection mechanism and changing the
garbage collection mechanism can potentially improve the
results. Regex on the other hand, runs in .NET regex oper-
ations most of the time, and these have not been optimized
for performance.

Speedup contributions breakdown: There are two fac-
tors contributing to speedups: JavaScript optimizations and
hints to low-level VM. Figure 5 shows MCJS J+ speed-
ing up Sunspider benchmarks about 4.7× compared to the
interpreted execution (29.71/6.37). 75% of this speedup is
due to MuscalietJS CIL code generation boosted by ar-
ray optimization, type analysis and function specialization
combined with our operation implementation and property
lookup. The additional 25% of the speedup is due to our
special hints passed to the Mono runtime (Section 5.3).

Individual Benchmark Analysis: Figure 5 also provides
details on the execution time of each benchmark in the Sun-
spider suite, normalized against the execution time of the
same benchmarks on the Rhino interpreter. The benefit for
type inference and array optimization (J+) for benchmarks
like access-nsieve, bitops-bit-in-bytes, and bitops-nsieve-bits
is very significant – 3 to 4× compared to the standard Mus-
calietJS JIT, which is already optimized. These benchmarks
make heavy use of arrays, and the combination of type anal-
ysis and signature-based specialization makes very effective
array optimizations possible.

Figure 6 shows part of the access-nsieve benchmark
source code. In function nsieve, the argument isPrime is
indexed several times in multiple loops. The standard Mus-
calietJS JIT converts isPrime accesses such as isPrime[k]
into direct calls to property lookup functions; these require
accesses to the global property cache and indirection through
property descriptors (explained in Section 4.4) before finally
loading the value in the internal array of the isPrime Ar-
ray object. Applying static type analysis on this function in
isolation is not enough to infer the type of isPrime, k, and
i correctly because isPrime is an argument, and the values

of k and i depend on another argument m. Instead, with
signature-based function dispatch enabled, the first hot exe-
cution of the function nsieve triggers type inference based
on the runtime types of the actual arguments, m and flags,
which are passed in from the sieve function. The algorithm
determines that m and isPrime are of type Int and Array,
respectively. As a result, the type of i and k are inferred to
be Int. This allows all accesses to isPrime to be converted to
direct array accesses, which speeds up the algorithm signifi-
cantly. For this simple example, inlining the internal function
and then applying a range-based flow-sensitive type analy-
sis may achieve similar results. However, such an analysis
cannot always infer the types given the dynamism in the lan-
guage, and even when it can it may need to generate extra
guards in the JITed code. This type of analysis can also be
expensive for long scripts. MuscalietJS is able to exploit dy-
namic types of arguments to provide effective optimizations
using a simple, fast type inference algorithm.

For a few of the benchmarks, such as date-format-xparb,
the speedups are not significant. Our investigation shows
that these benchmarks spend a high portion of their time in
JavaScript builtin functions, some of which are not imple-
mented very efficiently in MuscalietJS. We are redesigning
those builtins to improve performance and to allow them to
be optimized along with the rest of the JITed code.

6.2 Web Replay Benchmarks

Table 4. Speedup vs. Rhino I for WebReplay benchmarks.

Benchmark Rhino MCJS

C C+ I IJ J J+

BBC 0.79 0.74 1.62 0.60 0.60 0.60
Yahoo 0.99 0.99 3.36 1.67 1.29 1.24
Google 0.98 0.95 3.98 2.18 0.62 0.60
Wikipedia 0.70 0.70 2.03 1.81 0.69 0.67
Mozilla 1.01 0.95 2.08 1.61 0.64 0.62
Amazon 0.99 0.96 2.12 1.83 0.60 0.60

This section presents the results for 6 web replay bench-
marks, which are based on the page load behavior of six
popular websites: BBC, Yahoo, Google, Wikipedia, Mozilla,
and Amazon. IronJS does not support this benchmark as it
only supports ECMA3, but the other evaluated engines sup-
port ECMA5 [7]. These page load benchmarks involve large
JavaScript codes, but most of the code is not executed, and
most code that is executed is only run once [15]. This means
that JITing can account for a significant portion of overall ex-
ecution time and result in major slowdown, and our results
bear this out. Table 4 presents the speedups we measured
for each configuration, normalized against the performance
of the Rhino interpreter. For these benchmarks, Rhino per-
forms better with just the interpreter than when using the
AOT compiler at any optimization level. Similarly, Mus-
calietJS’s interpreter (I) outperforms its JIT compiler (J and

J+). The MuscalietJS interpreter also outperforms the Rhino
interpreter by a factor of up to 3.98 (2.53× on average).

6.3 Effectiveness of Property Lookup Operations

To study the difference between these workloads and mea-
sure the effectiveness of the property lookup algorithm used
by MuscalietJS, Table 5 reports the hit rate of our global
property lookup cache (Section 4.4) and also percentage of
inherited properties. For the traditional benchmarks, nearly
90% of property lookups hit in the global cache. Although
not shown here, the hit rate for the second-level local prop-
erty lookup caches is also very high for these benchmarks.
However, for the web replay benchmarks less than half of
the lookups could be found in the global cache. This reflects
the fact that during page load, not only is execution time
distributed across many more functions than in the data pro-
cessing benchmarks, but data access patterns are also dis-
tributed across a much larger set of properties. Another in-
teresting point here is that even for web non-repetitive Web
replay benchmarks, the property cache hit rate is more than
40% which mean for over 40% of property accesses in the
MuscalietJS interpreter the slow path lookup is avoided;
speeding up execution as shown in Table 4.

Table 5. MuscalietJS benchmark optimization statistics.
Benchmark Global property Percent of Inherited

cache hit properties

Traditional 88.0% 33.6%
Web Replay 41.2% 33.4%

7. Conclusions
In this paper, we argue that JavaScript engines can be ar-
chitected for performance without sacrificing other desirable
properties. We presented a layered JavaScript engine, with
a high-level runtime handling language-specific optimiza-
tions, relying on a low-level host virtual machine to provide
runtime services and machine-specific optimizations. This
layered architecture combined with general-purpose code-
generation hints passed from the top-level VM to the .NET
VM achieves significantly performance when compared to
prior layered architectures. The layered approach lets us fo-
cus on language-level optimizations, while relying on the
low-level VM for efficient code generation, and using host
VM features like reflection to improve performance. We
see significant value in this approach, and we believe this
trend will continue for other languages. As existing low-
level managed VMs like CLR continue to mature, there will
be an incentive to expose APIs to some of their low-level
features to ease the development of layered engines.

References
[1] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte,

N. Tillmann, and H. Venter. SPUR: a trace-based JIT compiler for
CIL. In Proceedings of the ACM international conference on Ob-

ject oriented programming systems languages and applications, pages
708–725, Reno/Tahoe, Nevada, USA, 2010.

[2] J. Castanos, D. Edelsohn, K. Ishizaki, P. Nagpurkar, T. Nakatani,
T. Ogasawara, and P. Wu. On the benefits and pitfalls of extending a
statically typed language jit compiler for dynamic scripting languages.
In International Conference on Object Oriented Programming Sys-
tems Languages and Applications, pages 195–212, Tucson, 2012.

[3] C. Chambers, J. Hennessy, and M. Linton. The design and implemen-
tation of the self compiler, an optimizing compiler for object-oriented
programming languages. Technical report, Stanford University, De-
partment of Computer Science, 1992.

[4] J. Dean, C. Chambers, and D. Grove. Selective specialization for
object-oriented languages. In ACM Conference on Programming Lan-
guage Design and Implementation, pages 93–102, La Jolla, 1995.

[5] Dynamic Language Runtime. http://msdn.microsoft.com/
en-us/library/dd233052.aspx.

[6] .NET Framework. http://msdn.microsoft.com/en-us/
vstudio/aa496123.aspx.

[7] ECMAScript. http://www.ecmascript.org/.

[8] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-
derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz. Trace-based just-in-time type specialization for dynamic
languages. In ACM conference on Programming language design and
implementation, pages 465–478, Dublin, Ireland, 2009.

[9] Google Inc. V8 JavaScript virtual machine. http://code.
google.com/p/v8/.

[10] IronJS. https://github.com/fholm/IronJS.

[11] M. N. Kedlaya, J. Roesch, B. Robatmili, M. Reshadi, and B. Hard-
ekopf. Improved type specialization for dynamic scripting languages.
In Dynamic Languages Symposium, pages 37–48, October 2013.

[12] Mono Project. http://www.mono-project.com.

[13] Nashorn JavaScript engine. http://openjdk.java.net/
projects/nashorn.

[14] Node.js. http://nodejs.org.

[15] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. Jsmeter: comparing
the behavior of javascript benchmarks with real web applications. In
USENIX Conference on Web Application Development, WebApps’10,
pages 3–3, 2010.

[16] Rhino JavaScript engine. https://developer.mozilla.
org/en-US/docs/Rhino.

[17] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated construction of
javascript benchmarks. In ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOP-
SLA ’11, pages 677–694, Portland, Oregon, USA, 2011.

[18] SpiderMonkey: Mozilla’s JavaScript engine. https:
//developer.mozilla.org/en-US/docs/Mozilla/
Projects/SpiderMonkey.

[19] ECMAScript typed arrays. http://www.khronos.org/
registry/typedarray/specs/latest/.

[20] Typescript. http://www.typescriptlang.org/.

[21] ECMAScript web workers. http://www.whatwg.org/specs/
web-apps/current-work/multipage/workers.html#
workers.

