

Intermediate Format Standardization:
Ambiguities, Deficiencies, Portability issues, Documentation and

Improvements

Amir Masoud Gharehbaghi, Mohammad Hossein Reshadi, *Zainalabedin Navabi
Electrical and Computer Engineering Department

Faculty of Engineering / University of Tehran / Tehran, Iran
{ amir, reshadi} @cad.ece.ut.ac.ir

*Northeastern University / Boston, MA 02115
Tel: 617-373-3034; Fax: 617-373-8970

navabi@ece.neu.edu

Abstract
The growth in VLSI technology demands more
capabilities from CAD tools. This requires better-
integrated environments and more design portability
across platforms and tools. The move towards
hardware description languages in recent years and
the issue of intellectual property and interoperability
puts a pressure on EDA vendors to come up with a
well-defined standard intermediate format. The draft
AIRE/CE intermediate format, as distributed publicly
on the Web, is one such standard. Although this
standard may be better defined and better documented
than any other proposed standards for this purpose, it
has shortcomings that must be resolved before it is
adapted by the EDA vendors and designers. This
paper focuses on the AIRE weaknesses and presents
our solutions according to our experiences with the
AIRE implementation1.
Keywords: Object-Oriented Intermediate Format,
AIRE/CE, IIR, FIR, HDL, CAD Tools.

1. Introduction

 One of the most important problems for
integrating CAD tools is sharing of the design
information between various tools environment. Lack
of a standard intermediate format makes interfacing
between tools very difficult, time consuming, and

1 The version of AIRE/CE being discussed in this paper is the
version that is publicly circulated on the Web [1], and several
companies commercially use versions if AIRE/CE which may differ
from the publicly available draft and which may address issues raised
in this paper. AIRE is a trademark of FTL Systems.

expensive. Exchanging design information, design
reuse, and intellectual property commerce are
important motivations towards developing a standard
intermediate format.
 Over the past decade, many efforts have been
done to develop a suitable IF for hardware description
languages. Researches from governmental, academic
and EDA vendors have been working on developing an
IF. The main effort for standardization of an IF was by
the IEEE DASC working group, which was
unsuccesful in reaching its goals.
 Other efforts led to the AIRE/CE (Advanced
Intermediate Representation with Extensibility /
Common Environment), representation which is an
object-oriented IF designed to support VHDL, VHDL-
AMS, Verilog, and other languages. Worked into
AIRE is extensibility capability, which makes this
standard adaptable to new applications. The memory
representation (Internal Intermediate Representation,
IIR) of AIRE has five layers of hierarchy. Its file
counterpart (File Intermediate Representation, FIR)
stores the compiled model in the FIR files.
 Although designers of AIRE have made their best
to develop a general IF, there are serious problems and
ambiguities in the AIRE structure. We will address
some of these issues here and present solutions we
reached in our implementaion of AIRE.
 Section 2 of this paper presents problems with
AIRE in specifiaction, documentaion and
implementation. In sectio 3, we present solutions to
these problems evolved as we implemented this
standard. In section 4 recommendations and
conclusions will be metioned.

2. Problem Issues

 A major problem in implementing AIRE is in
canonical and non-canonical categorization of objects
and handling them differently. Other problems with
AIRE specification are ambiguities in language
analysis and documentation. The following
subsections discuss these problems in more details.

2.1. Ambiguities

 The AIRE standard has two major ambiguous
areas in its structure and in language mapping.
 Although AIRE is claimed to cover Verilog,
ANSI C and VHDL-AMS as well as VHDL, its
structure is far more VHDL oriented than any other
language that it claims to support. In other words
before mapping any other language to AIRE, it should
be translated to VHDL. Even for this goal, it is not
very clear how to convert some language constructs of
VHDL to AIRE. For example, there are two methods
to define multidimensional arrays in VHDL but only
one of them is supported in AIRE.
 AIRE ambiguities are also in the area of language
mapping. Processing a source code is much more
difficult than processing a compiled binary format.
Intermediate formats are introduced to ease this
processing. To do this, there should be a clear
mapping between a language grammar and
intermediate constructs. In many cases, types of the
member variables in AIRE classes help to identify the
correct mapping. However, in some cases there is
either no clear or more than one possible way to do this
conversion. Consider, for example, the Guard implicit
signal. Whether a new guard signal is assigned to
every block statement guard expression or guard
expressions of nested blocks are converged, is not clear
from the standard.
 Although both alternatives may work, this and
other ambiguities affect design portability. Designs are
not portable between different implementations of
AIRE if they use different conversion techniques.

2.2. Deficiencies

 A critical deficiency in the AIRE standard is the
concept of canonical objects. In currently released
standard of AIRE, objects are divided into two major
groups of non-canonical and canonical. A canonical
object has many references whereas non-canonical
objects are referenced by only one other object. Non-
canonical objects are created and destroyed using new
and delete operators respectively. There may be many
instances of similar objects of this type keeping track

of all the references is an easy problem. On the other
hand, Canonical objects are created and destroyed
using get and release methods respectively. Every
object of this type will only have one instance in the
memory and a reference-count keeps track of the
number of references to the object. Calling get creates
the object in the first call and increases reference-count
in next calls. Calling release will decrease the
reference-count and will delete the object if its
reference-count is zero.
 Many classes in AIRE have member variables of
IIR* type. In fact, these variables can be of any type
because IIR is the predecessor of all other classes in the
AIRE hierarchy. When an object referencing another
object of the IIR* type is being destroyed, the kind of
the referenced object should be exactly known. If an
object is canonical, release should be used; otherwise,
delete is the proper destructor. This information is not
easily extractable from the IIR* type, and requires
much processing.

2.3. Portability

 Portability is one of the most important features
of a good intermediate format. To be portable,
compiled models should be AIRE implementation
independent. Although FIR can be very effective in
making AIRE compliant model portable, it has several
major problems in this area. The following lists some
of these portability issues.
 The structure of FIR files is not defined as part of
the AIRE standard. FIR V.3 that dates back to 1996 is
the only available FIR and that is not a suitable
intermediate format for HDL based CAD tools.
 Filing hierarchy of IIR objects need to be clearly
defined in a standard IF. The grouping of IIR objects
for a single FIR file is not known.
 Another problem with FIR is lack of a method for
cross-referencing between objects of different FIR
files. The current mechanism of using FIR_ProxyRef
and FIR_ProxyIndicator is inefficient for referencing
in the same file and inadequate for referencing objects
outside a file. In addition, there is no clear mechanism
for addressing other files and satisfying portability of
source files. Since every design refers to languages
primitives in its lower levels of design hierarchy, a
provision in FIR should be made to support this
 Language primitives that are not expressed in
AIRE and should be tagged as primitives are not
classified as such with a standard scheme. This
classification of objects is necessary in FIR and IIR
classes. When porting a compiled design, the set of
files to be ported is not clear. For example, every
implementation of AIRE has the standard packages,

and designs using such packages should not require
porting them.
 In addition to FIR problems, language mapping
ambiguities discussed earlier also affect portability of
compiled designs. For example, the standard does not
clearly define the order of suffixes and prefixes in
IIR_Name subclasses.

2.4. Documentation and Availability

 Documentation plays a major role in success of a
standard. Systematic upgrade and review as well as
regular updates are essential for documentation of a
standard such as AIRE. Unfortunately, AIRE Version
4.6 document of early 1998 is the most recent
document on AIRE. In addition to weaknesses and
ambiguities, it has many errors that are left
uncorrected. Of course we believe that the lack of an
implementation (or a good one) is the cause of many of
these documentation (or perhaps design) problems.
 The following is just a list of a few
documentation deficiencies in AIRE.

• Several classes are missing from the document

for example IIR_ChoiceByOthers and
IIR_ChoiceByExpression that are required for
expressing case choices.

• The parameter type of IIR_Label:: set_statement
does not allow all possible cases to be covered.
This includes labels for concurrent statements.

• The document does not discuss the IIR_Signature
as part of the IIR_Attribute.

• The suffix type in successors of IIR_Attribute as
specified in the document does not cover all
possible types allowed in the grammar.

• Although the IIR_ScalarTypeDefinition class has
a direction member variable, the document does
not define a corresponding type for it.

 Extension classes are another important part of
AIRE that need to be simplified. The process of
inserting extensions between AIRE classes is very hard
as presently defined. With the present level of
difficulty, it will be a time consuming process if a set
of existing extensions is to be ported from one AIRE
implementation to another. More specific style
definition for extension classes such as allowing and
defining macros are more effective from programmers’
point of view.

2.5. Security and Intellectual Property

 The present form of AIRE does not provide a
means of securing the transfer of compiled designs

from IP developers to their customers. Based on the
requirements of customers, the provider should be able
to control the access of details in a design. Currently
there is no specific method in AIRE to achieve this
important property. Although AIRE document claims
some sort of IP protection, no specific details for
achieving this is proposed. In fact, security issues are
in direct contradiction with portability, and more
intensive work is needed to cover both of these issues.

3. Improvements

 The problems discussed so far are just a few of
what we faced in the process of developing a VHDL
analyzer for producing AIRE classes. In this section,
we present our suggestions to improve the AIRE
structure as a standard IF. Applicability of our
suggested improvements is verified in our AIRE
implementation.

3.1. Ambiguity

 To solve the ambiguity issues, classes like
IIR_ChoiceByOthers and IIR_ChoiceByExpression
were added to AIRE. IIR_LibraryDeclaration was
changed to overcome the incompatibility of AIRE
classes with the VHDL grammar. In addition, a one-to-
one mapping between VHDL grammar and AIRE
classes has been clearly defined.
 There are many instances of IIR_TextLiteral* in
AIRE classes that should be replaced with a proper
IIR* or IIR_Declaration* variable. This requires the
use of the lookup method of IIR_Name class.
However, to make a valid lookup, one needs to know
the visibility scope of identifiers. This information is
not available after code generation. Alternative
solutions are either to extract visibility scope
information from the generated code or to provide links
from identifiers to their declaration in the generated
code. The former solution degrades performance of
applications based on AIRE. However, the latter is
preferred and it should be done in code-generation
elaboration-phase. The results should be stored in
predefined well-known variables in the AIRE classes
that have an identifier to reference other classes. For
example, prefix in IIR_SimpleName is a good candidate
for storing the pointer to an IIR_Declaration
corresponding to the identifier of IIR_Name.

3.2. Deficiencies

 Canonical and non-canonical objects cause
problem at destruction time because of their different
mechanisms of creation and destruction. In an object-

oriented design with facilities such as inheritance and
virtual methods, using conventional inefficient
methods such as detecting the destruction mechanism
based on type of the object are not recommended.
 To correct this problem, we developed a uniform
mechanism for both types of objects. This way, there is
no need to detect the object type at the destruction
time. This uniform mechanism also provides an easy
way of copying an object. A copy of an object is
needed in many instances such as default value
expression in signal and variable declaration,
elaboration of generate statements and component
instantiation statement, and guard signal handling in
block statements.
 This copy can be a duplication of the original
object or it can just share the pointer of the original
object. In our solution, the copy of an object is created
based on its type, i.e. sharing pointers for canonical
objects and duplication for non-canonical objects.
Besides being an easier implementation, it does not
present any overhead to the original AIRE.

3.3. Portability

 Almost all the existing portability problems of
AIRE are due to lack of a good FIR structure. We have
completely revised FIR with a new structure that
properly handles portability issues. In this new design,
each directory is equivalent to a VHDL library.
Library units are stored as separate FIR files in the
directory of their corresponding library. Format and
general concepts of our FIR design will be presented.

Figure 1. General Layout of FIR Text

 FIR files in this design can be in binary and text
formats. Text format is useful for debugging purposes
and academic use, while the binary format is more
compact and secure. Figure 1 shows a general outline
of our proposed FIR text format.
 There is only one basic-data-type for all designs.
The file corresponding to this holds information about
the number of basic data types and their size and byte
alignment. Figure 2 shows a partial outline of this file.

Figure 2. Basic Data Types

 An FIR file contains three sections: header, body,
and footer. The header contains information like
reference to the basic-data-types file, version number,
coding information, company id, etc. The FIR body
includes objects denoting the design information.
Objects employ two different mechanisms for
referencing internal objects and external objects. FIR
footer section consists of a CRC number over all bytes
of a file.

Figure 3. FIR File Structure

 There are two kinds of object referencing. Local
Object Referencing (LOR) points to other objects in
the same FIR file, while Global Object Referencing
(GOR) points to objects in other FIR files.
FIR_ProxyRef and FIR_ProxyIndicator of the present
FIR definition do not present a slotion for GOR and are

ByteAlignment,
FileSystem,
OSName,
NoOfTypeInfos,
TypeInfoSize,
TypeName,
TypeSize,
…

[Header]
basic_data_type=filename
version= version number
[1]
kind = IR_ENTITY_DECLARATION
…
identifier = [3]
…
architectures = [12]

[2]
kind = IR_IDENTIFIER
…
text = "Mux2x1"
length = 6

[12]
kind = IR_LIBRARY_UNIT_LIST
no_of_elements = 1
elements ={ARC_Behavioral_Mux2x1.FIR;1;[behavioral]}

Header:
FIR type,
header size,
body size,
basic_data_types filename,
version,
source language,
reserved for security information

Body:
Objects of single IRR_Entity_Declaration

Footer:
checksum

inefficient for LOR. We are introducing a new
mechanism to support both LOR and GOR in our text
and binary forms of FIR.
 LOR is simply done by unique IDs given to
objects of a FIR file. In a Library Unit, every object
that points to another object uses its ID in the FIR to
maintain its connectivity. The saving mechanism
promises the uniqueness of IDs in a file. GOR is more
complicated. It is done through filenames, version and
a sequence of names in the file. The version confirms
that the file is not compiled lately and that this part of
the design is still valid. The names will provide an
ideal way to address and object by its name. The
sequence of names is needed to solve the problems of
visibility and scope that is not available (and is not
needed to be) after compilation. This very important
property enables the designs to be ported easily even if
they have many references to the standard packages.
The loader should use every name in the sequence in
the revised version of Lookup to achieve the exact
pointer of the desired object. Every time a Lookup
fails, the Library Unit addressed by the filename must
be loaded.
 This design has a good mechanism for
implementing a standard package as a FIR file.
Language predefined structures are also supported.
 The mapping portability problem mentioned in
section 2.3 is resolved by defining a clear
correspondence between AIRE classes and the VHDL
grammar.

File addressing needs to be location independent
as much as possible. This guarantees the portability of
the design. Besides, every implementation and also
extension for AIRE may need to handle language
primitives (specially operators) differently. Some
primitives cannot be represented in AIRE. For
example, implementation of operators is application
and implementation dependent parts of design that
have not been solved in FIR.

Implementing some of very primitive parts of
standard packages in the AIRE implementation and
loading them in the memory before any other object is
the basis of our solution.

3.4. Documentation and Availability

 Documentation of a standard must be clear, error
free and publicly available. An organization should
assume responsibility for updating and publicizing
relevant documents. Over the last ten months, AIRE
has been suffering the lack of such an organization.
Our corrections and deviations from AIRE (V 4.6) are
now documented and can be made available upon
request.

3.5. Security and IP

 To protect their intellectual property, designers
prefer to represent their design in fully compiled
formats with very limited access to details. AIRE
developers claim to have solved this problem by
providing some coding techniques, and that a designer
can decide on the level of access to design information
that he or she wants to make available.
 The IIR and FIR structures in AIRE are public
information. Although it is possible to employ
techniques to fully secure the FIR files from
unauthorized access, securing the IIR format is very
difficult. On the other hand, when a design is loaded in
the memory, hackers can eventually break any secure
coding. Secure access to design information is in direct
contradiction with portability. In our implementation,
we have not worked on security measures.

4. Conclusion and future work

 In spite of its shortcomings, AIRE is an
intermediate with a detailed document that is publicly
available. There is a limited informal support for this
IF, which in many ways is better than that of other
intermediate formats. The object-oriented design of
AIRE is a feature of this IF that is compatible with
modern programming styles. A standard intermediate
format is essential for today’s design environments.
AIRE has come a long way towards achieving this goal
and a concentrated effort for taking the last few
remaining steps is needed.

References
1. AIRE document Version 4.6 at

http://www.eda.org/aire/
2. J.C. Willis, G.D. Peterson, S.L. Gregor, “ The

Advanced Intermediate Representation with
Extensibility / Common Environment (AIRE/CE)“ ,
IEEE Transaction on Computer, 1998.

3. IEEE standard VHDL Language Reference
Manual, IEEE std. 1076, 1993, The Institute of
Electrical and Electronic Engineers, New York,
NY.

4. Draft IEEE standard Verilog Language Reference
Manual, IEEE std. 1364, 1995, The Institute of
Electrical and Electronic Engineers, New York,
NY.

5. M. H. Reshadi, A. M. Gharehbaghi, “VHDL
Intermediate Format Representation” , CAD Lab.
Report 23, University of Tehran, August 1999.2

2
 Documentation will be made available electronically.

