
7D-3

Fast and Efficient Voltage Scheduling by Evolutionary Slack Distribution
Bita Gorji-Ara, Pai Chou, Nader Bagherzadeh, Mehrdad Reshadi

Center for Embedded Computer Systems,
University of California, Irvine,

(bgorjiar, chou, nader) @ece.uci.edu, reshadi @ics.uci.edu

David Jensen
Rockwell Collins,
Cedar Rapids, IA

dwjensen @rockwellcollins.com

Abstract - To minimize energy consumption by voltage
scaling in design of heterogeneous real-time embedded systems,
it is necessary to perfom two distinct tasks: task scheduling
(TS) and voltage selection (VS). Techniques propased to date
either are fast hut yield inetlicient results, or output efficient
solutions after many slow iterations. As a core problem to solve
in the inner Iwp of a system-level optimization cycle, it is
critical that the algorithm he fast while producing high quality
results. This paper presents a new technique called
EvolutioMry Relative Slack Distribution Voltage Scheduling
(ERSD-VS) that achieves both speed and etrciency. It
addresses priority adjustment and slack distribution issues with
low cost heuristics. Experimental results from running publicly
available testhenches show up to 42% energy saving compared
to a published technique called EVEN-VS. It also shows up to
70 times speed improvement compared to an efficient technique
called EE-GLSA.

I. Introduction

, Design of low power distributed embedded systems is
usually an iterative process that includes task scheduling
(TS) and voltage selection (VS), in order to meet both
performance and power constraints. TS is responsible for
meeting the timing and dependency constraints on the tasks,
and VS is responsible for the energy reduction through the
selection of a voltage-frequency combination (voltage mode)
for each of the tasks. The iterative design process makes the
runtime of VS and TS algorithms as important as their
efficiency. Scheduling of dependent tasks on a multi-
processor system is an NP-complete problem [61. One of the
well known heuristics for this problem is priority-based list
scheduling, in which the scheduling decisions are made
based on priority of the tasks. The priority values are usually
calculated based on the tasks execution delay and deadline.

An efficient voltage scheduling algorithm must address
two major issues: assigning appropriate amount of slack time
to the right set of task (Slack Distribution): and updating task
prioritiedordering to make the selected voltage modes
schedulable (Task Priority Adjustment); Note that changing
the voltage mode of a task during slack distribution will
change its execution delay and consequently, its priority.
Schedule of the tasks should be updated to accommodate new
changes. Addressing the slack distribution and priority
adjustment issues appropriately can yield energy efficient
results. However, it may increase the complexity of VS and
TS algorithms.

Luo and Jha [SI address the slack distribution issue by
evenly partitioning slack intervals among the tasks located
before the interval. Schmitz et al [9][10] show that this
technique is not efficient enough and propose a step by step
slowdown technique that sorts tasks based on their energy

saving potential. The algorithm then slows down the most
energy saving ones by a Atmin (assuming that the
corresponding mode is available). They also explore different
task priorities using a genetic algorithm (GA) that produces
various priority patterns. They have reported up to 43% more
energy saving compared to [8], while their algorithm runtime
has increased up to 78 times. The complexity of the proposed
algorithm is O@.i.mnz ’ log@)), where p is the size of
population in GA, i is the number of iterations, n is the
number of tasks and m.is a factor related to Atmin. Gruian and
Kuchcinski [5] have proposed a DVS-based constructive list
scheduling technique that dynamically re-computes task
priorities based on average energy dissipation. If the found
schedule does not meet the specified deadline, priorities of
tasks on the critical path are increased and all tasks are re-
scheduled. The complexity of their algorithm is O (V W n 3
.Iog(max(a))) where n is number of tasks. Bambha et al [l]
have used Monte Carlo and simulated heating algorithms to
find an optimized voltage mode for each task. They have
reported a runtime of several hundred of seconds for the
average size testbenches.

This paper presents a new technique called Evolutionary
Relative Slack Distribution (ERSD) voltage scheduling that
efficiently addresses slack distribution and priority
adjustment issues. The algorithm iteratively generates lower
power mode sets and evaluates their validity by performing a
best effort scheduling. To generate a new mode set, the
algorithm randomly slows down some of high power tasks.
Experimental results from running publicly available
benchmarks show up to 42% more energy saving compared
to [8]. Also, the results show up to 70 times speedup
compared to [IO], while generating equally energy-efficient
results.

This paper is organized as follows. Section 11, presents an
example to show the importance of a g o d slack distribution
algorithm. Section 111 formulates the optimization problem
on costs associated with a task graph model. We describe the
ERSD-VS algorithm in Section IV, followed by the
experimental results and analysis in Section V. Section VI
summarizes the contributions and concludes the paper.

11. Importance of efficient slack distribution

Figure 1 shows a simple schedule where two tasks (T, and
r2) with the execution delay of d are followed by a slack time
of the same size (4. We assume that the resource has three
modes: m,, m2 and m,; where, ml is the fastest mode with
supply voltage of 3 volts, frequency of F and power
consumption of IW. The energy consumption of the original
schedule is equivalent to the area of the boxes denoted by E, .
There are two possible ways of consuming the slack time:

0-7803-8175-01o4/e17.00 @MO4 IEEE. 659

mailto:ece.uci.edu
mailto:ics.uci.edu
mailto:rockwellcollins.com

7D-3

assigning it to one of the tasks; or dividing it between the
two. In the first case, rl runs in mode ml, and r2 runs in mode
m3. In this way, the energy consumption reduces from E, to
0.62xE1. In the second case, both tasks run in mode mz, and
the overall energy consumption is 0.43xE1.

\
\r

I
a 0.43 0.24

d 2d 3m lruz ..~ ~~

E = 0.62 EL E = 0.43 E, I
!

Figure 1. Different ways of parlitioning the slack between TI and ~2

In general, the same amount of slack time can be applied
towards saving a different amount of energy, depending on
the task that it is assigned to. In this example, there are only
two tasks, and their execution delay, power consumption and
deadline are the same. However, for heterogeneous systems,
the algorithm should handle many tasks with various
characteristics. In Section IV, we present our heuristic for
addressing this issue.

111. Problem formulation

In this paper, we investigate the voltage scheduling aspect
of system synthesis process. Therefore we assume that the
allocation of PES and the mapping of the tasks are already
done. A system is usually represented by its application and
architecture. The architecture is represented as a set of
processing elements PE and communication channels L A
processing element may operate at different voltage levels
and consume different amounts of power. These voltage
(power) levels are represented by voltage modes. The set of
voltage modes for a processing element pj is given by the
non-empty set VMj=(mj,,, ..., m,,mwJ. We denote the fastest
mode of pj byfastestMode@,). Each voltage mode m has its
own frequency, freq(m), and power consumption, Pwr(m).
The application is represented by a set of periodic task
graphs [TG,, ..., TGN) . All task graphs have the same period
and their own arrival time and deadline'. We represent the
task graph set in a directed acyclic graph G(T, 0 where
T={r l , r2, ..., r,) represents tasks and C={cij = (9, 5, wi,J)
represents data dependency of task rj to T, (its predecessor);
and mid indicates the communication delay of data to be
transferred. A task may be associated with a deadline S(r) by
which its execution must be finished. T, is the set of tasks T

for which S(r) is specified. Td must at least contain sink tasks
(tasks with no dependents) and if a sink does not have a
deadline, then it is assigned the same deadline as its TG.
Each task r is mapped to a processing element proc(r), and
has an execution delay texcc(r) in the fastest mode of that
processor. In addition to the mode of the processor, some
specific characteristics of individual tasks may affect their
power consumption. For example, a specific processor may
consume more power for floating point operations than for

~

I

I

660

' By considering the hyper-period of any set of periodic task p p h s and
repeating them accordingly. such a set can be constructed.

integer operations. To capture this effect, we represent each
task by a power dissipation factor, Pwr-Factor(r), that can
be extracted through profiling and measurement [2][3].

The goal of the optimization algorithm is to find a mode
set M corresponding to the task set T so that the dynamic
energy dissipation E,o,a, is minimized and no deadline and
precedence constraints are violated.

Therefore, we want to minimize:

E , ~ , ~ , = (~ v r (r , , m,) ' 1 , (r,, ma)) (1)
l l n l

Assuming the task riE T runs in mode miEM:

Pwr(z, , m,) = PWI_FOCIOI(T) . Pwr(m,) (2)
I, (z, , m,) = I, (c,) ,/req(fasleslMode@roc(r,))) /freq(mi) (3)

Further, no hard real-time deadline violation is allowed:

xir, , m,) 5 0, V r, E Td
where,

(4)

x(r,, m,) = f(rJ + I,L~,. m,) -Kc,), Vr. E T d (5)
Here, t, denotes the task start time assigned by the

scheduler. Note that a positive value of x shows the amount
of deadline miss, while a negative value of x shows the
amount of slack time available after task execution. We
denote the overall deadline violation of task set T (running in
mode set M) by xr(M), which is defined as the maximum of
all deadline violations:

X A W = .$$Y(GT)) (6) *

Furthermore, the execution order of the tasks and
communications must be respected and is expressed as
follows:

l h) + i d r J + U& 5 I&). V I,. r, E T . cv E C (7)
In addition, no execution overlap on any resource IT E (PE

U L) is permitted:

mlervol(r. rr) n tnterval(r, n) = 0, V z, , c, E T (8)
where interval(r, z) is execution interval of task 7 on

resource IT, represented by the start and end time of the task.

IV. ERSD Voltage Scheduling Algorithm

Figure 2 shows the block diagram of ERSD approach. The
ERSD algorithm starts by selecting the fastest mode set, and
proceeds by iteratively evolving it into a more energy
efficient one. The evolution of the modes is performed by
random slowdowns steered by the slowdown probability
(SDP) values. In each iteration, the execution delays of the
tasks are updated for the selected mode (Equation 3). Then,
the scheduling algorithm re-calculates the priority values
(priority adjustment) and re-computes the schedule. If the
generated schedule is valid, then the new mode is selected for
the next evolution; otherwise, the last valid mode will be
selected. In this section, we first present our heuristic for
calculation of slowdown probability and then describe the
details of the algorithm itself.

7D-3
large, then all the tasks in set T are randomly slowed down
(coarse grain slack distribution). If the amount of slack time
is small, however, then a subset of tasks S&Td is randomly
selected and the slack time of each task res,, is distributed
among its predecessors (fine grain slack distribution). The
coarse grain slack distribution operates on all the tasks, while
the fine grain one operates on the tasks that have some slack
time to further improve the results.

Figure 5 shows the function used to randomly slow down
the predecessors of a task. The chance of slowdown is first
given to the task itself and then to its predecessors (if there is
any more slack time). The RANOOMSLOWDOW function shows
how the random slowdown decisions are made based on
SDPs. If a randomly selected number r is smaller than the
SDP, then the task is slowed down. The function outputs the
amount of consumed slack time.

Figure 2. ERSD-VS algorithm

A. Calculating slowdown probability

Slowdown probability of a task is used to direct random
slowdowns. In heterogeneous embedded systems, different
resources have different power consumptions. Tasks that are
mapped to high power resources are better candidates for
slowdown than those mapped to low power resources. The
power consumption of each task depends on the mapped
resource, assigned mode and its individual power
characteristics.

In each iteration of our algorithm, the SDP of the task r; is
calculated by:

and k is a constant used for adjusting the range of SDP.
Note that Equation 11 calculates the proportion of the power
consumption of task q to the average power consumption of
all tasks. Therefore, it assigns higher values of SDP to high
power tasks.

B. Voltage selection algorithm

Figure 3 shows the pseudo code of our voltage selection
algorithm. It starts by selecting the fastest mode set for the
tasks that must be schedulable and has the highest energy
consumption. Then it calculates execution time and power of
the tasks (line 3) that is used by scheduler (line 4). In each
iteration of the loop (lines 5-12), a new mode set is generated
from a previous one by random slowdown of tasks (line 6).
and is used to produce a new schedule (line 8). If the new
mode is schedulahle, then it is selected for the next iteration;
otherwise, the last schedulable mode is used in the next
iteration.

01 ERSD-VS ()
02 optMode = s ~ " ~ ~ o o e s E T (1;
03 C U U I A ~ D E U ~ A N ~ P (opiMode 1;
04 SCHEDULT(oplMode);
05
06
07 c u c u u m ~ n c D ~ w r ~ ~ o ~ o m ~ (evMode);
08 scmm(evMode); //recalcularespnoniies~ ihen schedules
09 noOflter++
10 noOmselesslter ++
I I if(xdeevMode) 90) //ifevMode irschedulable
10 oprMode = evMode:
I I nmselesslter = 0
12 return oprMode

In the EVOLVE() function shown in Figure 4, first the

*le(n@tlter< loo0 andnoOfirselessIterc 100)
evMode = EVOLVE(oprMode);

Figure 3. main loop of voltage selection algorithm

slowdown probabilities of all tasks are calculated using
Equation (11). Next, if the amount of slack time x&Vf) is

~

66 1

N ~ W (M&etM)(
calculate SDP for each task using M.
evMode = M
i l (xdM isnot small)

//randomly slows down all the rash in T
R*"ML~SWWXAWA~T, xAW. evMode)

randomly select S&Td
for E s,

else

~ u m o n a r s w w m w p ~ ~ o u (r. -x (r), euMode)
return evMode

Figure 4. evolve function

In the ERSD-VS algorithm, except for EVOLVE(), all the
functions in the loop have linear complexity (O(n)). For
EVOLVE() function, the complexity of coarse grain slowdowns
is linear while the complexity of fine grain slowdown is
O(nrx(n-nd)). Therefore the overall complexity nf ERSD-VS
is O(ixn,xn), where nd is the total number of tasks whose
deadline i s explicitly specified (including all sink tasks), and
n is number of all tasks.

R*NWMLVSLOWDOWNPRED~CESSORI (task r, slack , evMode)
i f (S l O C b 0)

slack = slack - n-~smwmw(r, evMode)
forpred E Fredcessars(r)

if (slack >o)
R U ~ ~ ~ Y S W U I D O W I I P ~ R S @red. d o c k , evMode)

R*NIXIMSWW~WN(C, evMode)
I = generate a random number
if (I < SDP(r1)

evMode[rl= evModeIr1- 1
return c* lcumco~swosucr~)

/ /s lows down one level

return 0
Figure 5 . Speed up function

V. Experimental Results

The proposed voltage scheduling (VS) approach was
applied to a set of TGFF-based testbenches generated by
Schmitz et al ([IO]). In these benchmarks, the task graphs
are mapped to a set of PES, some capable of DVS. Table 1
shows the results of running different VS algorithms on the
testbenches. The second column of the table shows the
complexity of each testbench in terms of the numbers of tasks
and edges. The third column represents the results of a
voltage scheduling algorithm that evenly distributes the slack
times (EVEN-VS [SI). The forth column shows the result of
EE-GLSA approach [IO] that combines an efficient slack

7D-3

distribution algorithm with a Genetic Algorithm based List
Scheduling (GALS). The GALS explores various task
ordering and priorities to achieve the maximum saving
opportunities. Also, for these testbenches, they assumed that
there is no limitation in the number of possible voltage
modes. The third and fourth columns are the results reported
in [IO]. They report a worst-case run-time of 0.23s and
17.99s for EVEN-VS and EE-GLSA respectively by running
their C++ code on a Pentium IIIl750MWl28MB Linux PC.
Among them, EVEN-VS runs faster than EE-GLSA but EE-
GLSA generates more energy efficient results.

The fifth column shows the results of ERSD-VS (our
voltage scheduling heuristic) combined with a simple
priority-based list scheduling that uses an As Late As
Possible Schedule (without resource constraint) to calculate
priority values. To provide a fair comparison, we consider 20
voltage modes for each processing element. The sixth
column shows the run-time of ERSD-VS for different
testbenches. The algorithm is implemented in C++ and was
executed on a Pentium IIV700MHz1128MB Linux PC.
ERSD-VS saves up to 42% compared to EVEN-VS, and it is
very competitive with EE-GLSA. Note that while the quality
of ERSD-VS is comparable with EE-GLSA (the best
published results), it runs 7 0 times faster than EE-GLSA.

Table 1. Energy savings by running different VS algorithms on
testbenches of [IO]

VI. Summary and Future Works

This paper presents a new technique called Evolutionary
Relative Slack Distribution (ERSD) voltage scheduling that
addresses both the slack distribution problem and priority
adjustment, the two major issues of voltage scheduling. Our
heuristic calculates a power-oriented mode transition
probability for each task that directs the random evolution of
mode sets towards the most energy saving mode.

Experimental results from running publicly available
benchmarks show up to 42% energy saving over a published
technique called EVEN-VS. Also, ERSD-VS is competitive
with an energy efficient technique called EE-GLSA while
achieving up to 70 times improvement in algorithm runtime.
Because of its efficiency, ERSD-VS is a good candidate for
the inner most loop of the design space exploration
algorithms.

References
[I] N. Bambha, S. Bhattachwa, J. Teich, and E. Zitzler, “Hybrid

globalflocal search strategies for dynamic voltage scaling in
embedded multiprocessors”. In Proc. CODES, pages 243-248,
April 2001.

[2]C. Brandolese, W. Fomaciari, F. Salice, and D. Sciuto, “Energy
estimation for 32 bit microprocessors”. In Proc. CODES, pages
24-28, May 2000.

[3]S. Devadas and S. Malik, “A survey of optimization techniques
targeting low power VU1 circuits”. In Proc. DAC, pages 242-
247, 1995.

L41R.P. Dick and N.K. Jha, “MOCSYN: multi-objective core-
based single-chip system synthesis”. In Proc. DATE, pp. 263-
270, Mar. 1999.

[5lF. Gruian and K. Kuchcinski, “LEneS: task scheduling for low-
energy systems using variable supply voltage processors”. In
Proc. ASP-DAC, pages 449455, Jan 2001.

L6lM.R. Carey and D. S. Johnson, Computers and Intractabiliry: A
Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, NY, 1979.

[7]M. Grajcar, “Genetic list scheduling algorithm for scheduling
and allocation on a lwsely coupled heterogeneous
multiprocessor system”. In Proc. DAC, pages 280-285, 1999.

[8]J. Luo and N. K. Jha, “Power-conscious joint scheduling of
periodic task graphs and aperiodic tasks in distributed real-
time embedded systems”. In Proc. ICCAD, pages 357-364,
Nov 2ooO.

r91M.T. Schmitz and B. M. A-Hashimi, “Considering power
variations of DVS processing elements for energy
minimisation in distributed systems”. In Proc. ISSS, pages
250-255, Oct 2001.

110lM.T. Schmita and Bashir M. Al-Hashimi, Petru Eles, “Energy-
efficient mapping and scheduling for DVS enabled distributed
embedded systems”, In Proc. DATE, 2002.

662

