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Abstract - To minimize energy consumption by voltage 
scaling in design of heterogeneous real-time embedded systems, 
it is necessary to perfom two distinct tasks: task scheduling 
(TS) and voltage selection (VS). Techniques propased to date 
either are fast hut yield inetlicient results, or output efficient 
solutions after many slow iterations. As a core problem to solve 
in the inner Iwp of a system-level optimization cycle, it is 
critical that the algorithm he fast while producing high quality 
results. This paper presents a new technique called 
EvolutioMry Relative Slack Distribution Voltage Scheduling 
(ERSD-VS) that achieves both speed and etrciency. It 
addresses priority adjustment and slack distribution issues with 
low cost heuristics. Experimental results from running publicly 
available testhenches show up to 42% energy saving compared 
to a published technique called EVEN-VS. It also shows up to 
70 times speed improvement compared to an efficient technique 
called EE-GLSA. 

I. Introduction 

, Design of low power distributed embedded systems is 
usually an iterative process that includes task scheduling 
(TS) and voltage selection (VS), in order to meet both 
performance and power constraints. TS is responsible for 
meeting the timing and dependency constraints on the tasks, 
and VS is responsible for the energy reduction through the 
selection of a voltage-frequency combination (voltage mode) 
for each of the tasks. The iterative design process makes the 
runtime of VS and TS algorithms as important as their 
efficiency. Scheduling of dependent tasks on a multi- 
processor system is an NP-complete problem [61. One of the 
well known heuristics for this problem is priority-based list 
scheduling, in which the scheduling decisions are made 
based on priority of the tasks. The priority values are usually 
calculated based on the tasks execution delay and deadline. 

An efficient voltage scheduling algorithm must address 
two major issues: assigning appropriate amount of slack time 
to the right set of task (Slack Distribution): and updating task 
prioritiedordering to make the selected voltage modes 
schedulable (Task Priority Adjustment); Note that changing 
the voltage mode of a task during slack distribution will 
change its execution delay and consequently, its priority. 
Schedule of the tasks should be updated to accommodate new 
changes. Addressing the slack distribution and priority 
adjustment issues appropriately can yield energy efficient 
results. However, it may increase the complexity of VS and 
TS algorithms. 

Luo and Jha [SI address the slack distribution issue by 
evenly partitioning slack intervals among the tasks located 
before the interval. Schmitz et al [9][10] show that this 
technique is not efficient enough and propose a step by step 
slowdown technique that sorts tasks based on their energy 

saving potential. The algorithm then slows down the most 
energy saving ones by a Atmin (assuming that the 
corresponding mode is available). They also explore different 
task priorities using a genetic algorithm (GA) that produces 
various priority patterns. They have reported up to 43% more 
energy saving compared to [8], while their algorithm runtime 
has increased up to 78 times. The complexity of the proposed 
algorithm is O@.i.mnz ’ log@)), where p is the size of 
population in GA, i is the number of iterations, n is the 
number of tasks and m.is a factor related to Atmin. Gruian and 
Kuchcinski [5 ]  have proposed a DVS-based constructive list 
scheduling technique that dynamically re-computes task 
priorities based on average energy dissipation. If the found 
schedule does not meet the specified deadline, priorities of 
tasks on the critical path are increased and all tasks are re- 
scheduled. The complexity of their algorithm is O ( V W n 3  
.Iog(max(a))) where n is number of tasks. Bambha et al [l] 
have used Monte Carlo and simulated heating algorithms to 
find an optimized voltage mode for each task. They have 
reported a runtime of several hundred of seconds for the 
average size testbenches. 

This paper presents a new technique called Evolutionary 
Relative Slack Distribution (ERSD) voltage scheduling that 
efficiently addresses slack distribution and priority 
adjustment issues. The algorithm iteratively generates lower 
power mode sets and evaluates their validity by performing a 
best effort scheduling. To generate a new mode set, the 
algorithm randomly slows down some of high power tasks. 
Experimental results from running publicly available 
benchmarks show up to 42% more energy saving compared 
to [8]. Also, the results show up to 70 times speedup 
compared to [IO], while generating equally energy-efficient 
results. 

This paper is organized as follows. Section 11, presents an 
example to show the importance of a g o d  slack distribution 
algorithm. Section 111 formulates the optimization problem 
on costs associated with a task graph model. We describe the 
ERSD-VS algorithm in Section IV, followed by the 
experimental results and analysis in Section V. Section VI 
summarizes the contributions and concludes the paper. 

11. Importance of efficient slack distribution 

Figure 1 shows a simple schedule where two tasks (T, and 
r2) with the execution delay of d are followed by a slack time 
of the same size (4. We assume that the resource has three 
modes: m,, m2 and m,; where, ml is the fastest mode with 
supply voltage of 3 volts, frequency of F and power 
consumption of IW. The energy consumption of the original 
schedule is equivalent to the area of the boxes denoted by E, .  
There are two possible ways of consuming the slack time: 
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assigning it to one of the tasks; or dividing it between the 
two. In the first case, rl runs in mode ml, and r2 runs in mode 
m3. In this way, the energy consumption reduces from E, to 
0.62xE1. In the second case, both tasks run in mode mz, and 
the overall energy consumption is 0.43xE1. 
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Figure 1. Different ways of parlitioning the slack between TI and ~2 

In general, the same amount of slack time can be applied 
towards saving a different amount of energy, depending on 
the task that it is assigned to. In this example, there are only 
two tasks, and their execution delay, power consumption and 
deadline are the same. However, for heterogeneous systems, 
the algorithm should handle many tasks with various 
characteristics. In Section IV, we present our heuristic for 
addressing this issue. 

111. Problem formulation 

In this paper, we investigate the voltage scheduling aspect 
of system synthesis process. Therefore we assume that the 
allocation of PES and the mapping of the tasks are already 
done. A system is usually represented by its application and 
architecture. The architecture is represented as a set of 
processing elements PE and communication channels L A 
processing element may operate at different voltage levels 
and consume different amounts of power. These voltage 
(power) levels are represented by voltage modes. The set of 
voltage modes for a processing element pj is given by the 
non-empty set VMj=(mj,,, ..., m,,mwJ. We denote the fastest 
mode of pj  byfastestMode@,). Each voltage mode m has its 
own frequency, freq(m), and power consumption, Pwr(m). 
The application is represented by a set of periodic task 
graphs [ TG,, ..., TGN) .  All task graphs have the same period 
and their own arrival time and deadline'. We represent the 
task graph set in a directed acyclic graph G(T, 0 where 
T={r l ,  r2, ..., r,) represents tasks and C={cij = (9, 5, wi,J) 
represents data dependency of task rj to T, (its predecessor); 
and mid indicates the communication delay of data to be 
transferred. A task may be associated with a deadline S(r) by 
which its execution must be finished. T, is the set of tasks T 

for which S(r) is specified. Td must at least contain sink tasks 
(tasks with no dependents) and if a sink does not have a 
deadline, then it is assigned the same deadline as its TG. 
Each task r is mapped to a processing element proc(r), and 
has an execution delay texcc(r) in the fastest mode of that 
processor. In addition to the mode of the processor, some 
specific characteristics of individual tasks may affect their 
power consumption. For example, a specific processor may 
consume more power for floating point operations than for 
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' By considering the hyper-period of any set of periodic task p p h s  and 
repeating them accordingly. such a set can be constructed. 

integer operations. To capture this effect, we represent each 
task by a power dissipation factor, Pwr-Factor(r), that can 
be extracted through profiling and measurement [2][3]. 

The goal of the optimization algorithm is to find a mode 
set M corresponding to the task set T so that the dynamic 
energy dissipation E,o,a, is minimized and no deadline and 
precedence constraints are violated. 

Therefore, we want to minimize: 

E , ~ , ~ ,  = ( ~ v r ( r , ,  m,) ' 1 ,  (r,, ma))  (1) 
l l n l  

Assuming the task riE T runs in mode miEM: 

Pwr(z, ,  m, ) = PWI_FOCIOI(T) . Pwr(m,) (2) 
I, (z, , m, ) = I, (c,) ,/req(fasleslMode@roc(r,))) /freq(mi) (3) 

Further, no hard real-time deadline violation is allowed: 

xir, , m,) 5 0, V r, E Td 
where, 

(4) 

x(r,, m,) = f(rJ + I,L~,. m,) -Kc,), Vr. E T d  (5) 
Here, t, denotes the task start time assigned by the 

scheduler. Note that a positive value of x shows the amount 
of deadline miss, while a negative value of x shows the 
amount of slack time available after task execution. We 
denote the overall deadline violation of task set T (running in 
mode set M) by xr(M), which is defined as the maximum of 
all deadline violations: 

X A W  = .$$Y(GT)) (6) * 

Furthermore, the execution order of the tasks and 
communications must be respected and is expressed as 
follows: 

l h )  + i d r J  + U& 5 I&). V I,. r, E T .  cv E C (7) 
In addition, no execution overlap on any resource IT E (PE 

U L) is permitted: 

mlervol(r. rr) n tnterval(r, n) = 0, V z, , c, E T (8) 
where interval(r, z) is execution interval of task 7 on 

resource IT, represented by the start and end time of the task. 

IV. ERSD Voltage Scheduling Algorithm 

Figure 2 shows the block diagram of ERSD approach. The 
ERSD algorithm starts by selecting the fastest mode set, and 
proceeds by iteratively evolving it into a more energy 
efficient one. The evolution of the modes is performed by 
random slowdowns steered by the slowdown probability 
(SDP) values. In each iteration, the execution delays of the 
tasks are updated for the selected mode (Equation 3). Then, 
the scheduling algorithm re-calculates the priority values 
(priority adjustment) and re-computes the schedule. If the 
generated schedule is valid, then the new mode is selected for 
the next evolution; otherwise, the last valid mode will be 
selected. In this section, we first present our heuristic for 
calculation of slowdown probability and then describe the 
details of the algorithm itself. 
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large, then all the tasks in set T are randomly slowed down 
(coarse grain slack distribution). If the amount of slack time 
is small, however, then a subset of tasks S&Td is randomly 
selected and the slack time of each task res,, is distributed 
among its predecessors (fine grain slack distribution). The 
coarse grain slack distribution operates on all the tasks, while 
the fine grain one operates on the tasks that have some slack 
time to further improve the results. 

Figure 5 shows the function used to randomly slow down 
the predecessors of a task. The chance of slowdown is first 
given to the task itself and then to its predecessors (if there is 
any more slack time). The RANOOMSLOWDOW function shows 
how the random slowdown decisions are made based on 
SDPs. If a randomly selected number r is smaller than the 
SDP, then the task is slowed down. The function outputs the 
amount of consumed slack time. 

Figure 2. ERSD-VS algorithm 

A. Calculating slowdown probability 

Slowdown probability of a task is used to direct random 
slowdowns. In heterogeneous embedded systems, different 
resources have different power consumptions. Tasks that are 
mapped to high power resources are better candidates for 
slowdown than those mapped to low power resources. The 
power consumption of each task depends on the mapped 
resource, assigned mode and its individual power 
characteristics. 

In each iteration of our algorithm, the SDP of the task r; is 
calculated by: 

and k is a constant used for adjusting the range of SDP. 
Note that Equation 11 calculates the proportion of the power 
consumption of task q to the average power consumption of 
all tasks. Therefore, it assigns higher values of SDP to high 
power tasks. 

B. Voltage selection algorithm 

Figure 3 shows the pseudo code of our voltage selection 
algorithm. It starts by selecting the fastest mode set for the 
tasks that must be schedulable and has the highest energy 
consumption. Then it calculates execution time and power of 
the tasks (line 3) that is used by scheduler (line 4). In each 
iteration of the loop (lines 5-12), a new mode set is generated 
from a previous one by random slowdown of tasks (line 6). 
and is used to produce a new schedule (line 8). If the new 
mode is schedulahle, then it is selected for the next iteration; 
otherwise, the last schedulable mode is used in the next 
iteration. 

01 ERSD-VS ( ) 
02 optMode = s ~ " ~ ~ o o e s E T (  1; 
03 C U U I A ~ D E U ~ A N ~ P (  opiMode 1; 
04 SCHEDULT( oplMode);  
05 
06 
07 c u c u u m ~ n c D ~ w r ~ ~ o ~ o m ~ (  evMode ); 
08 scmm( evMode ); //recalcularespnoniies~ ihen schedules 
09 noOflter++ 
10 noOmselesslter ++ 
I I if(xdeevMode) 90) //ifevMode irschedulable 
10 oprMode = evMode: 
I I nmselesslter = 0 
12 return oprMode 

In the EVOLVE() function shown in Figure 4, first the 

*le( n@tlter< loo0 andnoOfirselessIterc 100) 
evMode = EVOLVE( oprMode ); 

Figure 3. main loop of voltage selection algorithm 

slowdown probabilities of all tasks are calculated using 
Equation (11). Next, if the amount of slack time x&Vf) is 

~ 

66 1 

N ~ W (  M&etM)( 
calculate SDP for each task using M. 
evMode = M 
i l (xdM isnot small) 

//randomly slows down all the rash in T 
R*"ML~SWWXAWA~T, xAW. evMode) 

randomly select S&Td 
for E s, 

else 

~ u m o n a r s w w m w p ~ ~ o u (  r. -x (r), euMode) 
return evMode 

Figure 4. evolve function 

In the ERSD-VS algorithm, except for EVOLVE(), all the 
functions in the loop have linear complexity (O(n)). For 
EVOLVE() function, the complexity of coarse grain slowdowns 
is linear while the complexity of fine grain slowdown is 
O(nrx(n-nd)). Therefore the overall complexity nf ERSD-VS 
is O(ixn,xn), where nd is the total number of tasks whose 
deadline i s  explicitly specified (including all sink tasks), and 
n is number of all tasks. 

R*NWMLVSLOWDOWNPRED~CESSORI (task r, slack , evMode) 
i f ( S l O C b 0 )  

slack = slack - n-~smwmw(r, evMode) 
forpred  E Fredcessars(r) 

if (slack >o) 
R U ~ ~ ~ Y S W U I D O W I I P ~ R S  @red. d o c k ,  evMode) 

R*NIXIMSWW~WN(C, evMode) 
I = generate a random number 
if ( I < SDP(r1) 

evMode[rl= evModeIr1- 1 
return c* lcumco~swosucr~)  

/ /s lows down one level 

return 0 
Figure 5 .  Speed up function 

V. Experimental Results 

The proposed voltage scheduling (VS) approach was 
applied to a set of TGFF-based testbenches generated by 
Schmitz et al ([IO]). In these benchmarks, the task graphs 
are mapped to a set of PES, some capable of DVS. Table 1 
shows the results of running different VS algorithms on the 
testbenches. The second column of the table shows the 
complexity of each testbench in terms of the numbers of tasks 
and edges. The third column represents the results of a 
voltage scheduling algorithm that evenly distributes the slack 
times (EVEN-VS [SI). The forth column shows the result of 
EE-GLSA approach [IO] that combines an efficient slack 
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distribution algorithm with a Genetic Algorithm based List 
Scheduling (GALS). The GALS explores various task 
ordering and priorities to achieve the maximum saving 
opportunities. Also, for these testbenches, they assumed that 
there is no limitation in the number of possible voltage 
modes. The third and fourth columns are the results reported 
in [IO]. They report a worst-case run-time of 0.23s and 
17.99s for EVEN-VS and EE-GLSA respectively by running 
their C++ code on a Pentium IIIl750MWl28MB Linux PC. 
Among them, EVEN-VS runs faster than EE-GLSA but EE- 
GLSA generates more energy efficient results. 

The fifth column shows the results of ERSD-VS (our 
voltage scheduling heuristic) combined with a simple 
priority-based list scheduling that uses an As Late As 
Possible Schedule (without resource constraint) to calculate 
priority values. To provide a fair comparison, we consider 20 
voltage modes for each processing element. The sixth 
column shows the run-time of ERSD-VS for different 
testbenches. The algorithm is implemented in C++ and was 
executed on a Pentium IIV700MHz1128MB Linux PC. 
ERSD-VS saves up to 42% compared to EVEN-VS, and it is 
very competitive with EE-GLSA. Note that while the quality 
of ERSD-VS is comparable with EE-GLSA (the best 
published results), it runs 7 0  times faster than EE-GLSA. 

Table 1. Energy savings by running different VS algorithms on 
testbenches of [IO] 

VI. Summary and Future Works 

This paper presents a new technique called Evolutionary 
Relative Slack Distribution (ERSD) voltage scheduling that 
addresses both the slack distribution problem and priority 
adjustment, the two major issues of voltage scheduling. Our 
heuristic calculates a power-oriented mode transition 
probability for each task that directs the random evolution of 
mode sets towards the most energy saving mode. 

Experimental results from running publicly available 
benchmarks show up to 42% energy saving over a published 
technique called EVEN-VS. Also, ERSD-VS is competitive 
with an energy efficient technique called EE-GLSA while 
achieving up to 70 times improvement in algorithm runtime. 
Because of its efficiency, ERSD-VS is a good candidate for 
the inner most loop of the design space exploration 
algorithms. 
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