
 GeReDiF: Using XML as a Structured Data Format in Grid Applications

Bita Gorji-Ara, Mohammad Hossein Reshadi, Mehdi Fakhraii

University of Tehran

Electrical and Computer Engineering Department

14399 Tehran, Iran

Phone: 98-21-800-9215; Fax 98-21-877-8690

Bita@cad.ece.ut.ac.ir, Reshadi@cad.ece.ut.ac.ir, Fakhraii@chamran.ut.ac.ir

Extended Abstract
Although distributed processing, in principle, provides

speed up and access to high performance resources, it will
be littl e used if people could not easil y exploit it for their
applications. In this way, many developers of grid
applications have attempted to facilit ate development of
specific distributed applications using different
mechanisms[1][2] such as designing generic libraries and
frameworks. These frameworks use various formats for
input, output and communication between nodes of the
grid. Choosing appropriate format has major influence in
the performance of the whole system as well as
maintenance, revision and easy-to-use.

Every distributed framework imposes some overhead
for initiali zation of a task and communication between
nodes, especiall y in processes such as dynamic load
balancing, which requires large amounts of data to be
transferred and re-loaded. Using a structured format can
reduce this overhead through decreasing the delay of
loading data. In this project, we introduce a Generic Re-
configurable Distributed Framework (GeReDiF), which
utili zes benefits of XML[3] to define a structured data
format for input, output and communications. We show
that how XML can represent complex data structures such
as graphs which can be loaded much quicker than any
other formats.

The first standard version of XML was introduced in
1998 by World Wide Web Consortium (W3C). Like
HTML, it is based on SGML (Standard Generic Markup
Language), a strong language designed for storing very
large structured documents. Tags and attributes in XML
describe the structure and meaning of the data and in fact,
XML is both data and document. XML grammar relies
on regular expressions and hence its grammar is simple
and its processing is fast. Using XML has other benefits:

- Since XML is a text format, it can be used in
heterogeneous networks and it is portable to any
other parallel platform.

- XML can represent the exact form of used data
structure[4]. As it will be described, this feature

can facilit ate the maintenance of a distributed
application.

- Designers can use their own set of tags, which are
meaningful for themselves, and they are not
limited to predefined keywords.

- Learning XML is not burdensome on the
programmers, because XML is very simple and
similar to HTML

- As a standard, XML is full y supported by the
World Wide Web Consortium (W3C) and this
support has led to many available free and
documented tools with which developers can
view, convert, load, save and check the validity of
XML files.

Although XML has many good properties, it needs
some modifications before it becomes useable in grid
applications. For example: XML is originall y designed to
represent a text, which is tagged. While in our new
application, we usually use tags rather than text.
Therefore, one enhancement can be restriction of text
with special begin and end delimiters. This enhancement
makes XML compiler much simpler and quicker.
Besides, new format is still a standard XML and is
loadable in available free tools.

When a data structure is saved in a file, loading each
node of data structure is an easy task, but setting the
relations of the nodes (i.e. pointers between nodes) is a
time consuming task and may require several searches in
the node li st. Although XML can represent a tree very
well and it can be loaded without any extra search, most
of the time, data structures are not as simple as a tree. To
address this issue, first, the spanning tree1[5] of the data
structure should be represented in XML format and then
the remaining links should be created by referencing
existing nodes. To reference the nodes we have used a
revision of XPath[6] standard, which is optimized for
both saving and loading.

To customize the GeReDiF framework for a specified
application the following steps are required:

1 Spanning tree of graph G is a tree, which covers all
nodes of the G.

- The data structure of the sequential algorithm
should provide means of representing itself in
XML format.

- All classes in the sequential algorithm should
inherit directly or indirectly from one of the basic
classes, e.g. TGeneralNode, in the distributed
library. There are some virtual methods in the
basic classes that the inherited ones should
implement or overload them to customize some
features of the framework. Examples of the
virtual methods are: XML loading, node
addressing and task partitioning.

- There are some classes in the distributed
framework that do not have a correspondence in
the sequential algorithm but are necessary for
customizing the framework. For example, the
TCustomXMLDataBase provides a mapping
between the classes and the XML tags used in the
sequential algorithm.

- The framework should be re-compiled with new
library.

One feature that makes a distributed application
maintainable is providing a facilit y for applying the
improvements and changes in the sequential algorithm to
the corresponding distributed one. In GeReDiF, the
classes of the sequential algorithm are directly used in the
process and hence changes in the properties are
automaticall y applied to the distributed version of the
algorithm. On the other hand, changes in the relations of
sequential nodes are transferred to the distributed
algorithm through XML files.

GeReDiF framework has been designed and
implemented and is going to be customized for two CAD
algorithm (fault simulation and, match and cover
algorithm for synthesis).

Following figures shows a circuit and corresponding
XML file designed for fault simulation algorithm.

1. References
[1] J. A. Chandy, S. Parkes and P. Banerjee, “Distributed

Object Oriented Data Structure and Algorithms for
VLSI CAD” , Proceedings of International Workshop
on Parallel Algorithms for Irregularly Structured
Problems, Santa Barbara, CA, August 1996.

[2] Lan Foster, Carl Kesselman, The Grid: Blueprint for a
new computing Infrastructure, ch. 8, Morgan
Haufman publishers, 1999.

[3] C.F. Goldfarb, P. Prescod, The XML Handbook, ch.
53, second edition, Prentice Hall , 2000.

[4] M. H. Reshadi, B. Gorji-Ara, and Z. Navabi,
“HDML: Compiled VHDL in XML” , IEEE VIUF,
2000

[5] J.A.Bondy and U.Murty, “Graph Theory with
Applications” , American Elsevier Publishing Co.,
1976.

[6] C.F. Goldfarb, P. Prescod, The XML Handbook, ch.
59, second edition, Prentice Hall , 2000.

