
GeDiKe: An attempt to reduce the complexity of distributed programming

Bita Gorji-Ara and Mohammad Hossein Reshadi

University of Tehran

Electrical and Computer Engineering Department

14399 Tehran, IRAN
Phone: 98-21-800-9215; Fax 98-21-877-8690

Bita@cad.ece.ut.ac.ir, Reshadi@cad.ece.ut.ac.ir

Abstract
Although distributed processing, in principle, provides

speed up and access to high performance resources, it
will be little used if people could not easily exploit it for
their applications. In this way, a lot of network
application developers attempted to facilitate
development of specific distributed applications using
different mechanisms. On the other hand, there are many
common modules in different distributed applications that
of course, their implementation may differ accordingly.
Iintending to reduce the complexity of converting a
centralized application to a distributed one, we have
introduced a generic distributed kernel (GeDiKe) in this
paper. Users can save their design in XML format
defined by themselves and then customize and initialize
GeDiKe to execute their algorithms. The results of
execution will be summarized in other XML files and can
be processed by any application.

GeDiKe has a modular architecture. Each module is a
flexible and replaceable unit and has a definite interface
through which other modules can interact.

The architecture utilizes the benefits of XML,
Extensible Markup Language, in modeling the tasks.
Processing XML is much easier than any other
conventional language used for modeling distributed
applications.

1. Introduction
Many researchers and application developers need to

revise their application to a distributed version to achieve
better performance. However, developing a distributed
application imposes extra works compared with
centralized applications. To facilitate distributed
programming, many application-specific tool developers
attempted to propose mechanisms for automating this
process [1]. Of course, full automation has not been
achieved yet. Introducing modeling languages such as
HPF and HPC++ along with powerful compilers are
successful examples of such attempts. These languages

automatically detect iterative bodies and provide strong
data parallelism [2],[3]. In some other attempts, available
independent tools are composed to provide required
resources and to construct a customized distributed
application.

In many applications such as CAD applications, there
are still case-by-case solutions and methodologies for
generating a distributed application [4],[5]. This involves
developers with unfamiliar concepts such as task
decomposition, resource management, load balancing,
network protocols and so on. In this paper, we propose a
mechanism for facilitating and accelerating the generation
of such applications.

Distributed applications have many common steps that
can be designed and implemented once and used various
times. This idea leads to propose a Generic Distributed
Kernel (GeDiKe) that should have three main
characteristics:

• It should be composed of replaceable and flexible
modules. Having definite interface and hidden
implementation, the modules can be marketable units.

• The engine should use a strong modeling language
through which users can describe the structure and data
of their design.

• The engine should provide a way that user can
customize the functionality.

In section 2 we introduce a mechanism for modeling
the tasks in a distributed engine utilizing XML and will
show its strengths and benefits for this approach. In
section 3 architecture of GeDiKe will be introduced. In
section 4 we summarizes the advantages and weaknesses
of the architecture and finally in section 5 conclusion and
future works will be presented.

2. The Modeling Language
The entry point of any application-specific tool is a

compiler which receives a design described in a modeling
language. Various languages have been used in different
experiences. For example, in NetSolve [6] the modeling
language is Fortran, C, Java or MATLAB. In SCIRun

a

b

c

k
z

[7], a visual programming language is used to compose
SCIRun libraries or programmer-supplied modules in to a
simulation application. In Nimrod [8], an experiment
definition language is used to organize multiple
invocations of a supplied application program [1].
Although these applications isolate the programmers from
decisions regarding the resources used to solve the
problem, most of application-support systems, including
our system, need user interaction for task decomposition,
debugging and evaluating performance of the system. In
next section, we explore the mechanism that programmers
can use to interact with kernel to customize their
applications.

GeDiKe uses XML [9] (Extensible Markup Language),
a strong language with many benefits for our approach,
for modeling user’s design and communication format.

The first standard version of XML was introduced in
1998 by World Wide Web Consortium (W3C). Like
HTML, it is based on SGML (Standard Generic Markup
Language), a strong language designed for storing very
large structured documents. Tags and attributes in XML
describe the structure and meaning of the data and in fact,
XML is both data and document. XML grammar relies
on regular expressions and hence its processing is very
easy and fast. XML also offers the following advantages:

• XML can transfer structured data. In a design, an object
may contain some objects that they, in turn, may contain
other ones. Saving discrete objects and retrieving their
relations at load time can be a very slow task. Figure 1
shows how XML can accelerate this task. In this
example, object A contains objects B and C and object B
contains objects D and E.

<A>

<D>

</D>

<E>

</E>

<C>

</C>

Figure 1- Representing a tree in XML

• In a distributed environment, a transmitted message
may contain user data as well as system level
information. Utilizing XML, complex headers for
defining the meaning of different parts of the message is
not a necessity any more.

• Designers can use their own set of tags, which are
meaningful for themselves, and they are not limited to
predefined keywords.

• Learning XML is not burdensome on the programmers,
because XML is very simple and similar to HTML.

• Capabilities such as comments and character data
sections in XML, facilitates it to use any other language.
Of course using these languages needs an extra effort
for compilation or interpretation of the model. This is
like using script languages in HTML.

• The meaning of data in an XML file is defined by tag
names rather than their positions. This means that
modifications to the existing structures, for releasing
new versions, needs very little effort while downward
compatibility is simply achieved.

• Although, being generated to be used by machine, XML
is completely readable for human beings and this
simplifies debugging and testing the system.

• As a standard, XML is fully supported by the World
Wide Web Consortium (W3C) and this support has led
to many available free and documented tools with which
developers can view, convert, load, save and check the
validity of XML files.

Strength and benefits of XML has made it a suitable
format for generic usages. In our engine, we have used it
for describing designs and their input and output format
as well as for communication purposes.

To clarify the concept of modeling the design with
XML, here we introduce a model for input and output
format of a simple distributed environment for fault
simulation.

2.1. Example: Fault Simulation
In fault simulation, the goal is to find a minimum set of

test vectors that can detect almost all faults in a digital
circuit. To accomplish this, for each test vector, the good
circuit is evaluated and then undetected faults are applied
to the circuit (fault injection) and the circuit is evaluated
again. A test vector can detect a fault if the output of the
good circuit and the faulty circuit are different. If so, the
detected fault is removed from the fault list. Parallelism
of this application is simple and easy. For example,
circuit evaluations can be done on different processors
and detected faults can be reported to all others.

The input format should contain the following
information:

• Description of digital circuit

• Reduced list of faults

• Test vectors

Figure 2 shows a simple digital circuit and Figure 3
shows one possible structure for input.

Figure 2- Simple digital circuit

A

B C

D E

<faultsimulator>

 <cir>
 <or>

 <and>

 <i>a</i>

 <i>b</i>

 <o>k</o>

 </and>

 <i>c</i>

 <o>z</o>

 </or>

 </cir>

 <FL>

 <sa0>k</sa0>

 <sa0>z</sa0>

 <sa0>c</sa0>

 <sa1>a</sa1>

 <sa1>b</sa1>

 <sa1>z</sa1>

 </FL>
 <vectors order= “a,b,c”>

 <v value=”0,0,0”/>

 <v value=”0,0,1”/>

 <v value=”0,1,1”/>

 <v value=”1,1,1”/>

 </vectors>
</faultsimulator>

Figure 3- Input format of fault simulator

The fault simulator in this model has tree major parts:
the digital circuit, the fault list and the test vectors that are
represented by <cir>, <FL> and <vector> tags
respectively. The circuit is described in a tree from
output to inputs. Gate tags, i.e. OR and AND, contain
other gates or wires as input and wires as output. This
mechanism of representing a circuit accelerates it’s
loading compared with a net-list representation, because it
needs minimum lookups for wires and nets.

In the fault list (<FL>) section the <sa0> and <sa1>
tags show the stock at zero and stock at one on wires
respectively.

The “order” attribute in test vectors (<vectors>)
section shows the order of primitive inputs in which
values are represented.

The output file (Figure 4) is the list of detected faults
and the corresponding test vectors that detects them. In
this section, the concept of ”order” and “value” is the
same as test vectors section.

Note that, there are many alternatives for modeling the
data and developers should design the best model to cover
their requirements.

<dfs order=”a,b,c”>

 <df value=”0,0,0”>

 <sa1>a</sa1>

 <sa1>c</sa1>

 </df>

 <df value=”0,0,1”>

 <sa0>c</sa0>

 <sa0>z</sa0>

 </df>

 <df value=”1,0,1”>

 <sa1>b</sa1>

 </df>

</dfs>

Figure 4- Output format of fault simulator

Because GeDiKe is designed for fast and easy
conversion of centralized applications, the XML input
files are supposed to be generated by automatically from
the data structure that developers use to run their
algorithms. There are successful experiences in
representation of a structure in memory in a XML file
[10].

3. Architecture of the GeDiKe
GeDiKe is a kernel that is composed of flexible and

replaceable modules. Each module can be a separate
dynamic link library (dll) [11] that hides the details of
implementation and has a well-known and documented
interface. Besides, this creates a new market for modules
and helps the developers to focus their efforts on a small
portion of a big design and reuse other available modules.

Other technologies such as COM [12] objects can be
used instead of dynamic link library but the overhead that
these technologies impose to the performance should be
considered.

Core

Parser Data Structure Monitoring

Message Handler Server Brokers

Visualization Fault Tolerance

Partitions Graph Servers Graph

Scheduler

Figure 5- Modules of a Client Element

Figure 5 and Figure 6 show a simplified block diagram
of dll modules in both client and server elements. In each
element, every dll connects as a plug-in to a core and then
performs the necessary operations. Obviously, these dlls
can be replaced by other appropriate ones in the
configuration stage of the system.

Fault
Simulation

Circuit

+

� c

a b

Test
Vectors

order

a,b,c

values

000

001

011

111

Fault
Dictionary

S0 S1

a

b

z

c

k

z

Core

Parser Data Structure Monitoring

Message Handler Server Brokers

Figure 6 - Modules of a Server Element

In the following sections, we describe the basic
modules of these elements.

3.1. Libraries
An increasingly important strategy for transparent

inclusion of parallelism is to encapsulate the parallelism
and network concepts in component libraries. There are
two types of libraries used in GeDiKe:

3.1.1. Data Structure library:
Modules connected to the core work and communicate

through predefined abstract data structure. This abstract
data structure must be customized by developers to cover
application’s requirements. To do this, a standard library
is prepared that contains basic classes such as TNode,
TDataStructure, TGraph, TEvent, TQueue and so on.
Developers can inherit their own classes from these basic
classes and add new properties to them. The new classes
must implement the partitioning algorithm. This new data
structure will be plugged to the core by DataStructure.dll.

3.1.2. Functional library:
The implementations of basic distribution and

parallelism algorithms are hidden in various modules,
which will be described in the following section.

3.2. Basic Modules

3.2.1. Parser.dll
One of the most sophisticated parts of application

specific tools are their compilers[13], because of
complexity of their languages. XML has been designed
using regular expressions and optimized for fast and easy
loading.

In GeDiKe, developers can define their own set of tags
in XML using parser.dll. Parser reads XML tags and
notifies DataStructure.dll to do appropriate settings.
Parser may offer other facilities like validity checking of
input format and error handling. The Parser.dll can be an
extension to SAX [14], which is a standard event driven
XML parser.

3.2.2. DataStructure.dll
Although DOM (Document Object Model) is known to

be the standard memory interface for XML, it is not
suitable for our purpose because of the following reasons:

• DOM is not very customizable because it uses a single
node data structure for all types of XML constructs.

• Loading a big XML file in DOM and then converting it
to the desired data structure has a lot of memory
overhead.

• DOM stores the whole information in text format and is
optimized for representing an XML file in the memory
rather than a hardware model. Therefore, it is not time
and space efficient for some designs.

Figure 7 shows a sample memory representation for
the contents of Figure 3. It is obvious that this is not the
only way of representing the information. However, the
nodes in the graph are customized classes inherited from
basic abstract TNode class. This class only provides
abstract primitive methods that every node in a graph
must support. By inheriting from basic classes,
customized classes should implement such abstract
methods and add application specific properties to them.

Figure 7- A sample memory model for Figure 3

Note that the data structure can be designed as if it was
used for a single node application. For example, the data
in Figure 3 can be processed by a centralized application
and the server side can still use this application but
receives a reduced data file with the same structure.

3.2.3. PartitionsGraph.dll
This dll creates a graph representing the final partitions

to be distributed on the servers. Edges in this graph show
the dependency of partitions.

3.2.4. ServersGraph.dll
This dll describes the delay of connections and the

processing power of available servers in a graph.

3.2.5. Scheduler.dll
Using results of PartitionsGraph.dll and

ServersGraph.dll, the Scheduler.dll assigns partitions to
servers.

3.2.6. ServerBrokers.dll

This unit associates an ID for each server and connects
to the available servers. It also provides multicast

Scheduler

Message Handler

Core Server Brokers

Sending
to

different
servers

Parser

Data Structure

Partitions Graph

Servers Graph

Input

features. In this way, there is no restriction on the
network protocol used for connections and it can be
determined by the developers by replacing this module.

3.2.7. MessageHandler.dll
This unit is in fact the user-defined manager of the

environment in which the developers determine the
algorithm by which external messages are received and
processed. Besides communication of units, security
issues, such as coding and decoding the data, are also
considered in this unit.

3.3. Client/Server Core
Core is the only fixed part of the engine and the whole

application is built by configuring the core through
connecting two sets of units to it. The first set is those
units that developers must provide their own customized
version. This set includes MessageHandler and
DataStructure units. The second group is those units that
developers may replace or use the available ones. This set
includes ServerBroker, ServersGraph, Scheduler and
PartitionsGraph units but developing them needs more
advanced knowledge about the environment and the
network.

After configuration, the core performs partitioning,
scheduling, running and termination of the task according
to the messages it receives. It also adds signature and
system level tags and information to the in-coming and
out-going messages and data files.

Figure 8- Design Preparation for Distribution

3.4. Flow of data before distribution
Figure 8 shows the process of preparing a design

description for distribution. In this process, the Parser
detects XML tags and notifies DataStructure unit to create
appropriate nodes. The result is delivered to
PartitionsGraph in which the structure is partitioned and
stored. Meanwhile the ServersGraph prepares, statically
or dynamically, a graph of existing server nodes and their
connections and sets the measures of processing power
and communications delays. Receiving this graph and the
partitions graph, the scheduler unit performs scheduling
algorithms and assigns server IDs to the partitions.
Customized and system tags are added to the partitions in
MessageHandler and core unit respectively. Finally, the
ServerBrokers unit receives the partitions and put them in
the buffer of appropriate server broker.

4. Advantages and Weaknesses of the
Architecture

Advantages of the proposed idea are as follows:

• Different teams can work on different parts of the tool
independently.

• Different implementations of units will intensify the
engine gradually.

• Reusing available modules can accelerate the
development of a distributed tool.

• Distributed algorithms can be tested by this engine
easily.

• Modifying one unit does not force recompilation of the
whole system.

• Developers can think of centralized applications and
utilize the engine to make a distributed tool.

Weaknesses of the proposed architecture are as
follows:

• Because of using XML as a communication format,
transmitted messages may be larger packages compared
with other formats. Of course, it is closely related to
user’s design.

• GeDiKe relys on tool developers for task
decomposition, and handling some events.

5. Conclusion and future work
In this paper, we proposed a distributed engine that

accelerates and facilitates the development of distributed
tools. This engine consists of different replaceable units
and fixed cores to which the units are connected.
Developers still can think of centralized applications and
develop each conceptually different part of the design in a
different module. By following some easy and standard
rules, these parts can be used by the engine to make up a
distributed application.

Based on what was proposed, the followings can be
done:

• Implementing suitable partitioning and scheduling
algorithms for well-known hardware algorithms.

• Implementing different versions of modules for
different platforms.

• Supporting different network protocols.

6. References
[1] Lan Foster, Carl Kesselman, The Grid: Blueprint for a

new computing Infrastructure, ch. 7, Morgan
Haufman publishers, 1999.

[2] S. Hiranandani, K. Kennedy, and C. -W. Tseng.
Compiling Fortran D for MIMD distributed –memory
machines. Communications of the ACJ, 1992.

[3] H. Zima and B. Chapman. Compiling for distributed-
memory systems. Proc. IEEE, 1993.

[4] C.P.Ravikumar, Vikas Jain, Anurag Dod, “Faster
Fault Simulation through Distributed Computing”,
IEEE Conference, 1996

[5] George Xirogiannis, “Granularity Control for
Distributed Execution of Logic Programs, IEEE
Conference, 1998

[6] H. Casanova and J. Dongarra. NerSolve: A network
server for solving computational science problems.
Tech. Report, University of Tennessee, November
1995.

[7] S, Parker. D. Weinstein and C. Johnson. The SCIRun
computational steering software system. Modern
Software Tools Scientific Computing, pages 1-44.
Boston” Birkhauser Press, 1997.

[8] D. Abramson, R. Sosic, J. Giddy and B. Hall .
Nimrod: A tool for performing parameterized
simulation using distributed workstations. In Proc.
Fourth IEEE Symp. on High Performance Distributed
Computing. Los Alamitos, CA IEEE Computer
Society Press. 1995

[9] C.F. Goldfarb, P. Prescod, The XML Handbook, ch.
53, second edition, Prentice Hall, 2000.

[10] M. H. Reshadi, B. Gorji-Ara, and Z. Navabi,
“HDML: Compiled VHDL in XML”, IEEE VIUF,
2000

[11] David J.Kruglinski, Inside visual C++, ch. 21,
Microsoft press, 1996.

[12] David J.Kruglinski, Inside visual C++, ch.
23(COM), Microsoft press, 1996.

[13] Lan Foster, Carl Kesselman, The Grid: Blueprint for
a new computing Infrastructure, ch. 8, Morgan
Haufman publishers, 1999.

[14] C.F. Goldfarb, P. Prescod, The XML Handbook, ch.
48, second edition, Prentice Hall, 2000.

