
A Graph Based Algorithm for Data Path Optimization in Custom Processors

Jelena Trajkovic, Mehrdad Reshadi, Bita Gorjiara, Daniel Gajski
Center for Embedded Computer Systems

University of California Irvine
Irvine, CA 92697-3425, USA

jelenat, reshadi, bgorjiar, gajski@cecs.uci.edu

Abstract

The rising complexity, customization and short time to
market of modern digital systems requires automatic meth-
ods for generation of high performance architectures for
such systems. This paper presents algorithms to auto-
matically create custom data path for a given application
that optimizes both resource utilization and performance.
The inputs to the architecture generator include applica-
tion source code, operation execution frequency obtained
by the profile run and a component library (consisting of
ALUs, busses, multiplexors etc.). The output is the appli-
cation specific data path specified as the set of resource in-
stances and their connections. The algorithm starts with a
dense architecture and iteratively refines it until an efficient
architecture is derived. The key optimization goal is to keep
performance within given boundaries while maximizing re-
source utilization. Our experimental results show that gen-
erated architectures are comparable to manual designs, but
can be obtained in a matter of few seconds, thereby leading
to significant productivity gains.

1 Introduction

System on Chip (SoC) design has fueled a need for spe-
cialized processors for different application domains. Full
HW design is too expensive and rigid for tuning the design
later for debugging and feature extension. General purpose
embedded processors are often too slow and power hungry
to be chosen as an implementation alternative for niche ap-
plications. Although custom processors are a better fit for
SoCs, they still need to be adapted to run the chosen appli-
cation efficiently. Such adaptation includes the selection of
an appropriate data path architecture. Manual design of data
path can be time consuming and error-prone. Therefore, in
this paper, we propose the automatic generation of the data
path architecture based on the profile of the application and
the system performance/resource constraints.

We follow a design methodology for custom processors
that separates the allocation of architectural resources and
their connections from the scheduling of control words that
drive that data path. The reasoning behind this separation of
concerns follows from our past experiences in custom pro-
cessor design. Since architecture selection and scheduling
are inherently difficult problems, performing them together
leads to excessive run times and typically sub-optimal re-
sults. The difficulty of doing scheduling and architecture
selection simultaneously has been a significant factor in the
limited acceptance of high level synthesis tools.

Figure 1 shows our custom processor design methodol-
ogy. The application code is first scheduled in an As Late
As Possible (ALAP) fashion. After an application’s require-
ments have been derived from ALAP scheduler, they are
used for allocation of the data path components. The only
limitation here is imposed by the components available in
the components library. The resulting architecture is eval-
uated and refined:the estimation of the execution time and
utilization for different number of components is done until
the resulting architecture satisfies given criteria.

The paper is organized as follows. We compare our ap-
proach to related work in Section 2. In Section 3 we de-
scribe proposed methodology and the tool flow that imple-
ments it. In Section 4 we present details of initial alloca-
tion algorithm and the heuristics used to match application
resource requirement to the components available in the li-
brary. We describe refinement and evaluation algorithms in
Section 5. The results are presented in Section 6. We sum-
marize and point out to the future work in Section 7.

2 Related Work

There is large body of work in high level synthesis where
the problems of scheduling, allocation and binding are been
solved together ([2, 9, 3, 7, 6, 5, 1, 8, 12]). For example,
the technique presented in [1] uses integer linear program-
ming. Linear programming is, in practice, applicable to
fairly small problems (the time to search for the optimal

Architecture Wizard
(Phase II)

Component
DB

Max Configuration
(XML)

Source Code
(C)

CW Generation

OR

Initial Allocation
(Phase I)

Profiler

Optimized
Architecture

(XML)

Report
(HTML)

ALAP

Mem

RF

MUL

CMem

P
C

B1

B2

B3

AG
ALU

C
W

bits
C

W
bits

S
tatus

Figure 1. Custom Processor Design Method-
ology.

solution increases exponentially with the design size) and
known to be NP-complete. To reduce the computation time
comparing to linear programming approach, Palulin et.al.
in [8] used force directed scheduling (FSD). This algorithm
performs the scheduling by uniformly distributing the op-
erations of the same type across the available control steps.
However, the FSD does not always produce an optimal so-
lution. Tseng et. al. in [12] use graphs, where nodes repre-
sent elements to be assigned to hardware and edges denote
that two notes may share the same hardware resource. The
allocation is then reduced to finding a maximal cliques in
the graphs (NP-complete). Marwedel in [6] uses branch-
and-bound technique to search for the optimal solution for
allocation problem. Since this approach is potentially expo-
nential, the heuristics may be used to limit the search space,
but the resulting allocations is not guaranteed to be optimal.

All of the prior work performs allocation, scheduling and
binding together. The main difference of our approach is
that we separate allocation from scheduling and binding,
which reduces the problem size and significantly decreases
the run-time.

3 Methodology

We propose a custom processor design methodology for
the No-Instruction-Set Computer (NISC). NISC style pro-
cessor differs from both well known processor types: CISC
and RISC. CISC processor uses complex instruction set
where instructions usually take several cycles to execute
and are stored in the micro program memory. The CISC
concept allowed for emulation of any instruction set and
creation of specialized instructions, but failed to be effi-
ciently applied to the pipelined data paths. On the other
hand, RISC instructions are simple and execute in one cycle
(on non-pipelined architecture), allowing efficient pipelin-
ing. The micro program memory is replaced by the decod-
ing stage. However this processor type have fixed instruc-
tion set which can not be easily modified. NISC completely
removes the decoding stage and stores the control words in
the program memory. The NISC compiler ([10, 11]) com-
piles the application directly onto given data path, creating
a set of control signals (called control word) that drive the
components at runtime. By not having the instruction set,
the data path can be easily changed, parameterized and re-
configured. Hence, the NISC concept allows separation of
scheduling and allocation.

The tool flow that implements the proposed methodol-
ogy is described in Figure 1. It consists of 2 phases: Phase
I called Initial Allocation and Phase II called Evaluation
that is implemented by the Architecture Wizard tool. In the
Initial Allocation phase, we use the schedule information
(ALAP schedule) to analyze component and connection re-
quirements, and the available parallelism of a given applica-
tion. The component and connection requirements are then
taken into account while choosing the instances of the avail-
able components from Component Library (CL) that will
implement the data path. Resulting architecture is called
Max Configuration.

The Max Configuration and the application source code
are used by the NISC compiler to produce the new sched-
ule. The new schedule, results of the profile run and the
component library are given back to the Architecture Wiz-
ard (performing the Evaluation phase). The Architecture
Wizard evaluates component utilization, and uses it together
with given performance and utilization constraints, to refine
the existing data path architecture. The Architecture Wiz-
ard also estimates the potential performance overhead and
utilization for the ‘refined’ architecture and automatically
updates the new architecture if constraints are not satisfied.
It outputs the net-list of the optimized architecture and the
report in the human readable format.

2

FU

RF

Source
Buses

Destination
Buses

MUX MUX

Memory
Interface

RFRF

MUX

FU
FU

MUX MUX

 To
Memory

Figure 2. Components and connections.

4 Initial Allocation

We start by defining maximal requirements of a given
application from the application’s ALAP schedule, where
the ALAP is made assuming infinite resources available. In
general, any schedule may be input to our tool. We choose
ALAP because it gives good notion of the operations that
may be executed in parallel. In addition to application’s
schedule, component library is another input of Initial Allo-
cation.

The Allocator traverses the given schedule, collecting
the statistics for each operation. For each operation (ad-
dition, comparison, multiplication etc.) maximum and av-
erage number of its occurrences in each cycle is computed.
The tool also records the number of potential data trans-
fers for both source and destination operands. For exam-
ple, if the ALAP schedule assigns 5 additions in the same
cycle, then 5 unit that perform addition will be allocated,
together with sufficient number of busses, register files and
memories to provide for reading and writing of all operands.
However, since the resources are selected from the choices
in CL, the resulting architecture depends on the number and
variety of components in the CL.

To ensure that the interconnect is not a bottleneck in the
Max Configuration, we perform a greedy allocation of con-
nection resources (Figure 2). This means that output ports
of all register files are connected to all source buses. Sim-
ilarly, input ports of all register files are connected to all
destination busses. The same connection scheme applies to
the functional units and the memory interface.

4.1 Component Selection

The Component Library consists of resources, where
each one is indexed by their unique name and identifier.
The record for each component also contains its type, num-

ber of input or output ports and name of each port. In case
of a functional unit, a hash table is used to link the func-
tional unit type with the list of all operations it may per-
form. Therefore, the functional units may also be indexed
by the the operation, allowing us to allocate the instance of
functional unit for the given operation. The library also car-
ries a link to the synthesizable RTL Verilog code for each
component. The designer may choose to use only avail-
able components or to extend the library. For adding the
new component, the aforementioned information needs to
be added to the CL, and the corresponding Verilog code for
the unit needs to be supplied to the NISC compiler.

For component allocation, we have derived several
heuristic that measure how well the selected components
match the given requirements. We start by allocating the
register file. We use the following formula to evaluate each
component:

H rf(x) = 2 ∗ (x in − rq in) + (x out − rq out), (1)

where x is the candidate component form the library, and
x in and x out are number of input and output ports of the
component x. rq in and rq out are number of required in-
puts and outputs respectively. Required number of outputs
correspond to the number of source operands computed by
the Allocator, and number of inputs correspond to the num-
ber of destinations. The heuristic is chosen to give priority
to the input port requirement because we wanted to allow
storage of as many results as possible. The candidate com-
ponent, with the smallest value of the function H rq is cho-
sen, and allocated to the data path.

Once the register file is selected, the source and the des-
tination buses are allocated. The number of source buses
for the Max Configuration is equal to the number of regis-
ter file’s output ports, if that number is odd, or (number of
register file’s out ports + 1) otherwise. The number of des-
tination buses solely depends on the number of the register
file’s input ports.

As for the memory interface allocation, we first con-
sider number of sources and destination buses and chose the
maximum of them to serve as the required number of ports
rq mi. We compute the value of H mi for each candidate
x component according to:

H mi(x) = x in − rq mi, (2)

where x in is the number of input ports of memory in-
terface. The component with the minimum value of the
heuristic is selected. In the corner case, where rq mi is
less (or greater) than any of x in the memory interface with
the minimum (or maximum) number of ports is chosen.

While allocating functional units, we choose the type of
unit that alongside the given operation, performs the largest

3

Histogram Creation

Check
Constraints

OR

Critical Path
Extraction

Flatten Histogram
for CP

Estimate Overhead
and Utillization

Net List Creation

Output Generation

Allocation

for each (C) /* C - componnent */
 while (C.overhead<=Tspec) and (C.budget <= Uspec){
 for each (B){ /* B - basic block */
 spill:{
 for each (X) /* X - cycle */
 cycle_budget = chosenN-X.in_use;
 if (cycle_budget > 0){
 if (running_demand > 0){
 can_fit = min(cycle_budget, abs(running_demand));
 running_demand += can_fit;
 if (cycle_budget > abs(running_demand))
 end_budget += cycle_budget - abs(running_demand);
 } else
 end_budget += cycle_budget;
 }
 running_demand += cycle_budget;
 }
 }
 C.overhead += B.f * running_demand;
 C.budget += B.f * end_budget;
 update(chosenN);
 }

Figure 3. Architecture Wizard - top level view.

number of operations. That way, we prevent allocation of
too many units and allow the Phase II to collect statistics
of operations used and potentially replace the unit with the
simpler one. Once the type is decided, we allocate maxi-
mum number that is computed by the Allocation tool. For
example, if application requires 3 additions and 4 subtrac-
tions, and the ALU is chosen, the tool will allocate 4 in-
stances of ALU. For practical purposes we do not allow the
number of allocated units to exceed the number of source
buses.

5 Estimation and Refinement

Phase II of the Architecture Selection tries to reduce
number of used resources to create the final design that
matches given performance and utilization goals. The
source code is first compiled using the Max Configuration
specified by the Initial Allocation. The resulting schedule
which also has the binding information together with the
execution frequencies of each basic block from the profile
run is used by the Architecture Wizard.

Figure 3 shows the tool flow. We start by creating the
histogram for each functional unit type or for each input or
output port of the storage unit. It is necessary to consider the
utilization of all components of the same type in order to ap-
ply ‘Spill’ (estimation) algorithm described in Section 5.2.
Next, we select the part of the application that we want to
optimize (Critical Path Extraction).The algorithm used for
this step will be presented in Section 5.1. For the selected
path, we try to estimate the number of instances of the cho-
sen component that will keep the execution within the given
boundaries and utilization. This loop runs until both the
performance and utilization constraints are satisfied for the

B3 l:10 f:54B2 l:8 f:11

B5 l:4 f:1
B8 l:3 f:50

B6 l:200 f:4 B7 l:2 f:50

B9 l: 10 f:1

B1 l:20 f:65

B4 l:40 f:10

B0 l:27 f:1

e0

e1 e2

e3

e4
e5

e6

e7
e8 e9

e10

e11

Figure 4. Example of the Original Graph for a
Given Application

B3 l:10 f:54B2 l:8 f:11

B5 l:4 f:1 B8 l:3 f:50

B6 l:200 f:4 B7 l:2 f:50

B9 l: 10 f:1

B1 l:20 f:65

B4 l:40 f:10

B0 l:27 f:1

e0

e1 e2

e3

e4

e5 e6

e7' e8' e9

e10

e11'

Figure 5. Removing Backward Edges: Exam-
ple of Application’s DAG.

given component. Once we have reached the decision about
the optimal number of components, we go through the allo-
cation, net-list creation and output generation (Section 5.3).

5.1 Critical Path Extraction

The goal of this phase of the Architecture Wizard is to
select the critical path of the application. The question is
how to decide which basic blocks are the most critical or
the most promising for optimization. For reducing overall
execution time we need to consider delays from start of the
application till its end. We define the critical path of the
application as the sequence of basic blocks from start to the
end that contribute the most to the execution time. For a
given application and its Max Configuration architecture,
we have two sets of data, namely the length of each basic
block in cycles (derived from schedule) and the execution
frequency of each basic block during profiling.

Let us represent the application using a graph, where

4

each basic block i is represented by node Bi and there is an
edge between nodes Bi and Bj if basic block j is a possi-
ble successor of block i. A simple example of such a graph
is shown in Figure 4. Each node of this graph is annotated
with the basic block’s length (‘l’) and frequency (‘f’). In
order to find where the given application spends most of
its execution time, we need to find the longest possible path
from the starting to the ending basic block: in this case from
block B1 to block B8 as shown in Figure 4. Each block has
a weight attached to it. The weight may be chosen to be the
block’s length, frequency or the product of length and fre-
quency. The problem is to find the path where the sum of the
weight of the nodes in that path is maximum. This path is
our critical path that is chosen for optimization. We propose
a set of transformations that reduce the critical path problem
for a (possibly cyclic) graph to the well known shortest path
problem. The main transformations are:

1. Creation of direct acyclic graph (DAG) form a given
graph

2. Creation of a dual graph (edge-node substitution)

3. Weight computation

The original graph for a given application may poten-
tially contain cycles, like one in Figure 4. In order to apply
one of the shortest path algorithms we need to remove the
backward pointing edges (e7, e8 and e11 in Figure 4). Those
edges can not simply be erased, because there would be no
way to find out all other potential paths form the given loop
to the end of the application. Therefore we re-link the back-
ward pointing edges in such matter that we keep the path
information, using the following algorithm:

X : node
X.pred: set of nodes preceding X
ei (X → Y): edge i from node X to Y
for all ei(X → anynode do

if ei (X → X) then
remove ei

end if
if (ei(X → Y)) and Y ∈ X.pred then

mark ei for removal
if � ∃ ej (X → N) where N �∈ X.pred then

find ek (Y → Z) such that
(� ∃ em (Z → X) and (� ∃ ep (Z → Q) where
Q ∈ X.pred))
create eq (X → Z)

end if
end if

end for
We examine each outgoing edge of every node. In case

the edge points to the source node itself, we remove the
edge. Otherwise, we compare the destination with the set

E5

E4

E11'

E8'

E6

E1

E0

b0

b21_4 b3

Estart

Eend

b10_ 1 b10_2

E2

b21_3

E3

b6

b3

b8
E7'

E10

b4

b5

b9

b5

b28_3

b2
8_4

b211_4

b211_3

Figure 6. Dual Graph of the Given Applica-
tion.

of predecessors of the source node. In case the destination
is in the set of predecessors, we mark the edge for removal
and try finding the candidate replacement destination. To
find the replacement destination, we explore all edges of the
original destination node trying to find one that points to the
node other than the original source or any of its predeces-
sors. Once such a node is found, we remove the marked
edge and add the one from the original source to the can-
didate destination. The resulting graph is a direct acyclic
graph DAG.

The next step is the creation of the dual graph in which
edges become nodes, and nodes are translated into edges as
described by the following algorithm:

Create Estart to be source to the edge b0

for all ex ∈ DAG do
Create a node Ex ∈ Dual

end for
for all By ∈ DAG do

for all incoming ei (P → Y) ∈ DAG do
for all outgoing eo (Y → Q) ∈ DAG do

Create edge by (Ep → Eq) ∈ Dual
end for

end for
end for
Create Eend

We start by allocation a starting node Estart. For each
edge ex in the given DAG a node Ex is created in the dual
graph. Each edge By from the DAG gets translated into
n × m edges, where n is number of incoming and m is

5

1
2
3
4 FUi typeNumber of

instances

Time

Candidate # of
units

FUi typeNumber of
instances

Time

1

2
3
4

FU in use in the current cycle

Estimated use of FU

Available FU not in use

0 1 2 3 4 5

0 1 2 3 4 5 6

Figure 7. Example of ‘Spill’ Algorithm.

the number of outgoing edges of By . Finally, we create an
ending node Eend such that there is the destination node
for the edge that corresponds to the last block in the DAG
(B9 in Figure 5). The resulting dual graph is shown in the
Figure 6.

The last step is transforming the longest path to the short-
est path problem. Here we simply compute the new weights
for each edge: one may use 1/wi or Wmax − wi where
Wmax is the maximum of all weights in the graph. We
use topological ordering, but any algorithm for finding the
shortest path can be applied to this graph. More on the
graph algorithms can be found in [4].

5.2 Spill Algorithm

The task of the Architecture Wizard is to come up with
the data path architecture that will deliver the performance
within given limits while minimizing the number of the
components and connections used. The optimization starts
by creating the utilization histogram for each component
type, in case of functional units, and for data ports of the
same kind (input or output), in case of the storage units. It
is important to group the items of the same kind together in
order to easily estimate potential execution and utilization
impact when changing the number of instances.

The example of utilization graph for the functional unit
of type i is shown on the top of Figure 7. The basic block
for which the diagram is shown has 6 cycles (0 to 5). It can
be seen that no instance of functional unit is used in cycle 2,
one instance is used during cycles 0, 1 and 4, and 3 instances
are used in the cycles 3 and 5. If we assume that the type
and number of instances of all other resources (memories,
register files and its ports, buses and multiplexors) do not
change, we can conclude that we need 3 instances of func-
tional unit of type i to execute this basic block in no more

than 6 cycles. Let’s assume that it is acceptable to trade
off certain percentage of the execution time in order to re-
duce number of components (and therefore reduce area and
power and increase component utilization). The designer
is responsible for deciding about the performance boundary
and the desired component utilization.

The example of ‘Spill’ algorithm is shown in the bottom
of Figure 7. We start with a candidate number of compo-
nents: in our case that is the largest average number of used
instances of a given type for all basic blocks. In general,
any other number, including maximum and minimum num-
ber of used units may be used. We are interested in comput-
ing how many extra cycles would be required compared to
the schedule with Max Configuration architecture and what
would their utilization be, if we allocate the candidate num-
ber of units.

In order to compute execution overhead and utilization
we keep two counters: running demand and running budget.
Running demand is a counter of operations that are sched-
uled for the execution in the current cycle on a unit of type
i but could not possibly be executed (in the current cycle)
with the candidate number of units. For example, in both
cycles 3 and 5 in bottom of the Figure 7 there is one oper-
ation that needs to be accounted for by the running demand
counter (shown in dashed lines). Running overhead counter
counts the units that are unused in a particular cycle.

In each cycle, we compare the current number of in-
stances with the candidate number. If the current number
is greater, the number of ‘extra’ instances is added to run-
ning demand, counting the number of operations that would
need to be executed later. On the other hand, if the current
number is less then the candidate, we try to accommodate as
many operations as possible that were previously accounted
for with running demand counter, modeling the delayed ex-
ecution. We try to fit in as many operations as possible in
the current cycle , as shown in the cycles 4 and 6. If there
are some unused units left (when the available number of
instances is greater than the running demand, like in cycles
0, 2 and 6), the running budget is updated by the number of
free units.

Note that this is only estimation, not a schedule. We
must note that this method does not account for interfer-
ence while changing the number of instances or ports of
other components. The accuracy of a given method will be
discussed in Section 6.

The presented estimation algorithm uses only statically
available information and provides the overhead and utiliza-
tion for a single execution of a given basic block. In order
to be able to compare the resulting performance with the
designer’s requirements, we incorporate execution frequen-
cies in the estimation.

The estimation algorithm is shown on the right hand side
of the Figure 3.For each of the components, we apply the

6

Table 1. Comparison of Max Configuration
and Refined design.

FUs Buses Tri-State

Bench. MC R MC R MC R

bdist2 6 4 6 5 40 19

OnesCounter 3 2 6 5 34 17

Sort 4 3 6 5 36 18

dct32 6 4 6 5 40 19

‘Spill’ algorithm to all basic blocks using the largest av-
erage number of used units of a particular type across all
blocks as a initial candidate number. That way we get ‘per
block’ estimates for the overhead and utilization. Each of
these statistics are multiplied by the block frequency and
accumulated in the global overhead counter (counterpart to
the running demand) and global budget counter for a given
unit. We also compute the dynamic length of the selected
blocks for the Max Configuration by multiplying length by
frequency. Having estimates for both new and the baseline
architecture, we are able to decide if the candidate number
of units will deliver required performance while satisfying
utilization constraint. If the candidate number of units does
not deliver desired performance, we increment the candi-
date number and repeat the estimation. If the candidate
number of units is sufficient, we check the utilization, and
if it is above the given threshold, we decrement the can-
didate number and repeat the estimation. In case the algo-
rithm does not converge with respect to the both constraints,
we give the priority to performance, and make the decision
solely on the overhead.

In the simple case, shown in the the Figure 7 if the al-
lowed overhead is 20% (i.e. 1.2 cycles for this example) and
the desired utilization per unit is 75%, having 3 units would
deliver required performance, but would have the units un-
derutilized. Therefore, having 2 units would be satisfactory
solution, with 66% of utilization per unit and 17% of over-
head.

5.3 Allocation, Net-list creation and Out-
put Generation

The allocation only slightly differs from the Max Con-
figuration allocation. The storage component allocation is
done using the same heuristics as described by Equations 1
and 2. The difference is that here the required numbers are
provided by the estimator. The number of bus instances is
also decided by the estimation algorithm. Previously, dur-
ing the initial allocation, the operands that were appearing
in the code were matched with the components from the

Table 2. Performance comparison of Max
Configuration and Refined design.

Bench. Overhead[%] Avg. Iterations T[s]

bdist2 32.1 2.8 0.05

OnesCounter 11.9 1.4 0.05

Sort 0.6 2.9 0.06

dct32 31.1 1.4 0.48

library to determine the type of functional unit. Here the
functional unit type is inherited from the Max Configura-
tion architecture, and the number of instances is specified
by the outcome of ‘Spill’ algorithm.

After observing the connectivity statistics, the tool de-
cides to provide full or limited connectivity. The full con-
nectivity scheme is used in Max Configuration as described
in Section 4. In limited connectivity scheme, we reduce
number of connections from register file’s output ports to
the source buses, and we connect only one bus to one output
port. The tool then connects the provided components ac-
cording to the scheme provided in Figure 2. It automatically
allocates tri-state buffers and multiplexors as needed creat-
ing the internal net-list of components. The internal net-list
data structure is used to generate the output file according to
the format required by the compiler. The tool also outputs
a simplified description of optimized architecture in human
readable HTML format.

6 Results

We implemented the Initial Allocation and the Architec-
ture Wizard as the part of the NISC tool flow. We use C++
and the Microsoft Visual C++.NET as the implementation
platform. For the functional simulation of the designs, we
use ModelSim SE 5.8c. The parameters for the Architecture
Wizard were selected to be 20% for the allowed execution
overhead and 75% for the desired component utilization.
The experiments were performed on a 1GHz Intel Pentium
III running Windows XP. The benchmarks used are bdist2
(from MPEG2 encoder), OnesCounter, Sort (implementing
bubble sort) and dct32 1 (function from MP3 encoder). In
case of the benchmarks bdist2 and dct32 the execution time
does not depend on the input data set. On the other hand,
for OnesCounter and Sort we used the input data that makes
them run in the worst case execution time. OnesCounter op-
erates on maximum 32-bit number, and Sort operates on 100
elements, with input data in the reverse order of the desired.
The profile information are obtained manually.

1We would like to thank Pramod Chandraiah for providing the source
code.

7

As described in Section 3 we first generate the Max Con-
figuration. This is followed by the refinement phase imple-
mented by the Architecture Wizard. Table 1 gives a com-
parison of the number of functional units, buses and tri-state
buffers between the Max Configuration(MC) and the final
refined architecture(R) for selected benchmarks. As we can
see, the maximum reduction in number of components is
33% and the average is 31%. The smallest saving is for the
Sort, because of the nature of the application: the applica-
tion actually needs to use 3 different functional units, and
hence the number of instances can not be reduced further.
The number of buses is reduced by 16% in all cases where
the number of tri-state buffers is reduced by 52% in the best
case and 51% on the average.

Table 2 compares the performance of both designs and
illustrates the tool execution characteristics for the same set
of benchmarks as in Table 1. The first column of the ta-
ble shows the benchmark, and the next column shows the
overhead in execution cycles between Max Configuration
and the refined design. This number is shown as percent-
age of the execution on the Max Configuration. It can be
seen that the first tree benchmarks satisfy the given con-
straints. The maximum deviation from the specified over-
head is for the dct32: for this benchmark, the number of
buses fails to provide required number of source and desti-
nation operand. This example points our future research to
incorporating the interference between components in our
estimation algorithm. The next columns shows the aver-
age number of iterations per selected basic block per com-
ponent that the Architecture Wizard performs before con-
verging. For example, on average for a given component in
bdist2 the ‘Spill’ algorithm will be called 2.8 times to es-
timate one selected basic blocks. The average number of
iterations for all benchmarks is 2.1. The right most column
(T) is total time required to run the refinement. The dct32
has the highest runtime amongst selected benchmarks, in
spite of relatively small average number of iterations. This
is because it has large basic blocks and majority of time is
spent in algorithm, not in iterations. The average run time
is 19 ms.

7 Conclusion

As the complexity of digital systems continues to grow,
we are faced with the challenge of designing such systems
within shrinking time to market. We presented a method
for automatic generation of data path for custom processors
that alleviates the problem of manual architecture design.
We presented our work in the context of a novel custom pro-
cessor design methodology that separates data path design
from code scheduling. This is in contrast to previous efforts
in the field that have been riddled with the vicious circle of
optimizing both data path and schedule together. Our ex-

perimental results demonstrate the feasibility and efficiency
of the data path selection algorithm as compared to a man-
ual design. In the future, we plan to add more capabilities
to the automatic selection algorithm to account for more so-
phisticated architectures including pipelining, chaining and
forwarding. We also plan to improve our heuristics to fur-
ther reduce the overall area of functional units.

References

[1] B. Landwehr, P. Marwedel, and R. Dömer. OSCAR: Op-
timum Simultaneous Scheduling, Allocation and Resource
Binding Based on Integer Programming. In Proc. Euro-
pean Design Automation Conference, pages 90–95, Greno-
ble, France, 1994. IEEE Computer Society Press.

[2] R. K. Brayton, R. Camposano, G. De Micheli, R. Otten, and
J. van Eijndhoven. The yorktown silicon compiler system.
In D. D. Gajski, editor, Silicon Compilation, pages 153–203
or 204–311. Addison-Wesley, 1988.

[3] F. Brewer and D. Gajski. Chippe: A system for constraint
driven behavioral synthesis. IEEE Trans. on Computer-
Aided Design, July 1990.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, 2nd edn. Cambridge, MA: MIT
Press., 2001.

[5] S. Devadas and R. Newton. Algorithms for hardware alloca-
tion in data path synthesis. IEEE Trans. on Computer-Aided
Design, July 1989.

[6] P. Marwedel. The MIMOLA system: Detailed description
of the system software. In In Proceedings of Design Au-
tomation Conference. ACM/IEEE, June 1993.

[7] N. Parkand and A.C.Parker. Sehwa: A software package for
synthesis of pipelines from behavioral specifications. IEEE
Trans. on Computer-Aided Design, Mar. 1988.

[8] P. Paulin and J. Knight. Force-directed scheduling for
the behavioral synthesis of asics. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
June 1989.

[9] P. G. Paulin, J. P. Knight, and E. F. Girczyc. HAL: A multi-
paradigm approach to automatic data path synthesis. In In
Proceedings of Design Automation Conference, pages 263–
270. ACM/IEEE, July 1986.

[10] M. Reshadi and D. Gajski. A cycle-accurate compilation
algorithm for custom pipelined datapaths. In International
Symposium on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2005.

[11] M. Reshadi, B. Gorjiara, and D. Gajski. Utilizing horizontal
and vertical parallelism with no-instruction-set compiler for
custom datapaths. In In Proceedings of International Con-
ference on Computer Design, 2005.

[12] C. Tseng and D. Seiwiorek. Automated synthesis of data
paths in digital systems. IEEE Trans. on Computer-Aided
Design, 1986.

8

