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Abstract

Type feedback and type inference are two common methods used
to optimize dynamic languages such as JavaScript. Each of these
methods has its own strengths and weaknesses, and we propose
that each can benefit from the other if combined in the right way.
We explore the interdependency between these two methods and
propose two novel ways to combine them in order to significantly
increase their aggregate benefit and decrease their aggregate over-
head. In our proposed strategy, an initial type inference pass is ap-
plied that can reduce type feedback overhead by enabling more in-
telligent placement of profiling hooks. This initial type inference
pass is novel in the literature. After profiling, a final type infer-
ence pass uses the type information from profiling to generate effi-
cient code. While this second pass is not novel, we significantly im-
prove its effectiveness in a novel way by feeding the type inference
pass information about the function signature, i.e., the types of the
function’s arguments for a specific function invocation. Our results
show significant speedups when using these low-overhead strate-
gies, ranging from 1.2x to 4X over an implementation that does
not perform type feedback or type inference based optimizations.
Our experiments are carried out across a wide range of traditional
benchmarks and realistic web applications. The results also show
an average reduction of 23.5% in the size of the profiled data for
these benchmarks.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments, Optimization

Keywords JavaScript, type specialization, type inference, profil-
ing, language implementation

1. Introduction

In the past decade there has been a resurgence of dynamic lan-
guages, as shown by the growth and penetration of languages such
as Python, Ruby, and JavaScript. The defining characteristic of
these languages is their extreme dynamism, including dynamic
types. This dynamism, while useful, presents a significant chal-
lenge for efficient language implementation. Because the types of
values are statically unknown, the language runtime requires an ex-
tra level of indirection: instead of operating directly on values, it
operates on special “dynamic values” that box actual values inside
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a data structure that records the enclosed value’s type. To operate
on these values the runtime must conditionally branch based on the
enclosed value’s type, unbox the enclosed value to perform the re-
quired operation (which sometimes involves complex type conver-
sion operations), then re-box the result back into a dynamic value.
This extra level of indirection not only imposes a large runtime
overhead, but also inhibits other optimizations that could take place
if the runtime knew the value types ahead of time.

Researchers and dynamic language implementors have spent
considerable effort on creating efficient dynamic language run-
times. The main strategy employed is type specialization: replac-
ing the generic code that manipulates dynamic values with code
specialized to handle only specific types of values. Of course, this
strategy is only effective if the runtime can be guaranteed that the
specialized code will only be run on values of the appropriate types.
The two differing methods that have historically been used in var-
ious language implementations to provide this guarantee are type
feedback [20] and type inference [1]].

These two methods have differing strengths and weaknesses.
Type feedback uses online type profiling to find code that is (al-
most) always executed on specific types and specializes the code
based on this information. Type profiling provides very precise in-
formation which enables many optimizations, but cannot guaran-
tee that the code will never be executed with different types in the
future; thus the specialized code must contain type checks that de-
tect and recover when unexpected types are encountered. Type in-
ference, in contrast, deduces value types that must necessarily be
correct and specializes the code based on these deductions. While
the resulting specialized code does not require any online checks or
recovery, the dynamic nature of these languages means that type in-
ference may miss many opportunities for specialization that would
be discovered by type feedback.

1.1 Key Insights

A natural question to ask is which one of type feedback or type
inference is the more effective method. Agesen et al [8] compare
these two methods head-to-head in their Self language implementa-
tion and found that there was no clear winner. They suggest that fu-
ture work should explore how to combine these two methods rather
than choosing between them. Hackett et al [18]] take up this idea
to explore combining these two methods for an efficient JavaScript
language implementation. However, their combination went in only
one direction: they used the type feedback information to help in-
crease the effectiveness of type inference.

Our work shows that there is even more to be gained from
combining type feedback and type inference in novel ways. In
particular, we present two new strategies for combining the two:

e We show that type feedback can do an even better job of sup-
porting type inference by separating function invocations ac-
cording to the functions’ type signatures, i.e., the types of the
function arguments at the time of function invocation.



e We show that, besides using type feedback to aid type infer-
ence as has already been explored, type inference can actually
be used to support type feedback by using the inferred type in-
formation to more intelligently place type profiling hooks, thus
significantly reducing profiling overhead.

1.2 Contributions

Our specific contributions are:

e We propose a novel language-agnostic way of combining type
inference and type feedback for dynamic language runtimes
(Section[3).

e We improve upon previous schemes for using type feedback
to aid type inference by using a function’s type signature to
distinguish different function invocations (Section ).

e We introduce a new scheme that uses type inference to lower
the overhead of type feedback by enabling more intelligent
placement of profiling hooks (Section [4).

e We implement our proposed schemes in a research JavaScript
engine, MCJS. We evaluate this implementation on both the
standard performance benchmarks (including Sunspider [5], V8
[6], and Kraken [4]) and on real-world websites (including
popular websites like Amazon and BBC) and the JS1k demos
[2] (Section3).

We find that this mechanism results in speedups ranging from
1.2x to 4x over an implementation that does not perform type in-
ference and type feedback based optimizations, across standard
benchmarks. For web-replay benchmarks, which represent the
JavaScript code executed when loading a website, function sig-
nature based type inference gives an average speedup of 5%. In the
case of the JS1k demo benchmarks, which run for a longer duration,
we observe an average speedup of 1.6x. Finally, using the types
inferred by type inference, the type feedback in this mechanism
inserts 23.5% fewer type feedback sites in the code.

2. Background and Related Work

Type inference and type feedback for dynamic scripting languages
have been a topic of research for a number of years. In this section,
we define these terms and give a brief overview of the current state
of the art approaches in this area.

2.1 Defining Terms

Type inference. Type inference enables type specialization with-
out any instrumentation of the code at runtime. The types of some
subset of the local variables in a function can be inferred statically
before it is JITed and executed. For example, an assignment state-
ment var a = 0; means that, according to the language seman-
tics, variable a must be of type int immediately after that pro-
gram point. Any further expressions using a can be type specialized
based on this deduction as long as a is not redefined with a differ-
ent type. Type inference is usually performed as a whole-program
analysis in statically-typed languages (where type inference was
first developed). However, whole-program type inference for a dy-
namic scripting language is not practical because the type inference
is usually done online during program execution, and this requires
that the type inference process must be extremely fast. Therefore,
dynamic language runtimes usually perform type inference on a
per-function basis only for hot functions, detected adaptively dur-
ing execution.

Type feedback. Type feedback enables type specialization by in-
strumenting the code at runtime and observing the types actually
seen during execution. This process involves instrumenting the run-
time to collect and store the types that are observed during execu-

tion. For example, an expression a + b may imply string concate-
nation, integer addition, or dictionary update based on the types of a
and b. By profiling the types of a and b during several executions of
this expression, the runtime can type specialize the operation during
the subsequent executions for those types that are most often seen.
If, for instance, the observed types for a and b are usually integers
then the runtime can insert type specialized code that first checks
whether the types of a and b are int and then performs integer ad-
dition directly. This type specialization using type feedback comes
at a cost. First, collecting type information during the initial execu-
tion phases creates overhead with respect to both time and memory.
Researchers have explored various ways of optimizing this by using
different strategies like collecting coarse-grained data using sam-
pling [21]] and counters [9}|10]. Secondly, types need to be checked
during the course of execution of the program using guard instruc-
tions. To tackle this problem, in runtimes like Google’s V8 engine
[[17,125], the runtime performs a secondary pass over the generated
code to detect and eliminate redundant checks.

2.2 State of the Art

Compiler developers for the language Self [15] pioneered the con-
cept of using type feedback for optimization of object-oriented dy-
namic languages. The Self compiler used an instrumented version
of the program being executed to observe the types of the objects
or receiver classes for every message pass or function call. The
program was then specialized for the most frequently observed re-
ceiver class. Holzle et al [19]] discuss the implementation of poly-
morphic inline caches and various strategies used to select the can-
didate code for specialization. These strategies helped shape the
design of the dynamic scripting language runtimes that followed.

PyPy is a mature Python implementation written in a subset of
Python called RPython [12] [13| 23]]. PyPy contains a tracing JIT
compiler that uses runtime profile information to guide its trac-
ing and eventual compilation of code paths. In contrast to this ap-
proach our algorithm explores the interdependency of type infer-
ence and type feedback to perform type specialization online on
a per-function basis. The two approaches are orthogonal to each
other and can be combined to improve type specialization.

Rubinius [24] is a Smalltalk-80-style VM and JIT compiler for
Ruby. Though not as mature as PyPy, it uses a more traditional
method-based JIT compiler. The compiler uses a simple form of
type feedback in which they just emit guards to validate type
assumptions. They rely on LLVM to perform the bulk of their
optimization. Rubinius has a fast compiler that emits bytecode, they
then compile the bytecode directly to LLVM IR. By going directly
to LLVM IR Rubinius is not able to use Ruby-level semantic
reasoning in optimization, thus losing the opportunity to perform
high-level optimizations such as type inference.

The Crankshaft compiler [17] in Google’s V8 JavaScript engine
heavily relies on type feedback to generate specialized code. Dur-
ing the generation of a high-level intermediate representation (Hy-
drogen), each operation in an expression is specialized based on the
observed types. Once this is done a set of other optimizations are
performed including a static type inference pass to eliminate unnec-
essary guards. In contrast to this approach our runtime performs
static type inference in two stages, one of which happens before
profiling to reduce the profiling overhead. This not only reduces
the amount of unnecessary profile information that is collected but
also makes sure that the number of guards is reduced in the gener-
ated code. Another distinction is that we supply the function argu-
ment types to the type inference pass, which greatly increases its
effectiveness.

The Jaegermonkey compiler in Mozilla’s Spidermonkey engine
performs fast hybrid type inference [18] based on the observed
types in the previous runs. The expressions that are not type in-



ferred are encapsulated in a type barrier and monitored during
runtime. These expressions include global variables, function argu-
ments, object property accesses, array element accesses, and func-
tion calls. If the observed type differs from the type used to special-
ize the code, the whole code is invalidated. Our approach differs
from this approach because our algorithm uses the function type
signatures as one of the inputs to our type inference algorithm to
gain greater precision. Thus, the generated code does not have type
barriers or guards around function arguments. In contrast to their
approach, our algorithm performs type inference in two stages to
significantly reduce the profiling overhead. Another difference be-
tween our approaches is that Jaegermonkey’s type inference algo-
rithm attempts to infer the type of objects and their fields as well.
Our algorithm relies on type feedback for specializing operations
on objects and its fields.

3. High-Level Overview

In this section, we provide a high-level, language-agnostic descrip-
tion of our proposed ideas. In the next section, we will make the
discussion concrete for a specific language (JavaScript) and lan-
guage implementation (MCJS). We first discuss augmenting type
feedback with function signatures to aid the effectiveness of type
inference. We then discuss using type inference to aid the perfor-
mance of type feedback.

Figure[T]describes the general workflow of the language runtime
system when executing a function, indicating the places where our
proposed methods fit in. Our first type inference pass (First TI)
takes as input the function’s signature, i.e., the types of the function
arguments for this specific invocation. Different signatures for the
same function are handled independently from each other. The
phase First TT uses the function signature in combination with the
standard techniques for type inference. The results are used to place
type profiling hooks in the code, and in the phase Profile those
hooks are used to collect type information that is specific to a given
function signature (i.e., the type profiling information is collected
and stored separately for each signature of a given function). The
phase Second TI takes the original function signature along with
the collected type profile information and performs a second, more
aggressive type inference based on the new information. Finally,
the result is used to specialize and optimize the code for further
execution.

3.1 Function Signatures

Typically, type inference algorithms use the syntactic structure of
a function, combined with certain semantic rules of the language,
to deduce type information—for example, the result of a left-shift
operation is guaranteed to be an integer. However, in a dynamic
language there are many operations that do not give any clues
about types. For example, the "+’ operator is polymorphic and pro-
vides no information to the type inference algorithm. We can im-
prove the available information by providing types for the func-
tion’s arguments. This idea is inspired by existing schemes for
specialized function dispatch based on type signatures, such as
multimethods[11} [16]. Our innovation is to make the function sig-
natures an additional input to the type inference algorithm.

Figure [2| provides a motivating example. Signature-based dis-
patch operates as follows: After foo becomes hot, during the first
call to foo a type-specialized version of foo’s body is created and
then specialized to handle arguments of signature (int, int).
During the second call to foo, another version of foo’s body is
created that is specialized to handle arguments of type (string,
string). Finally, before the third execution of foo the runtime
determines that there is a match between the current call’s signa-
ture and a previously-seen signature. It then re-uses the specialized
body for (int, int) as the target of the call.

func foo(a, b)
{
var c
var d

a + b;
global + c + bar()

foo(1l, 3);
foo("bob", "alice");
foo(2, 5);

Figure 2. Motivating example
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Figure 3. Intermediate representation of foo before type infer-
ence.

We extend this idea to use the function type signature as an input
to the type inference algorithm. Since the function dispatch mech-
anism ensures that the type signatures are always enforced (i.e.,
specialized code will never be called with the wrong types), we can
rely on these signatures as always being correct and specialize the
code for those types without requiring the type checks or recovery
code that is necessary for normal type feedback mechanisms.

3.2 Phase First TI: Type Inference — Type Feedback

The goal of type feedback is to provide hints to the runtime and
the JIT compiler about the types of variables. To do so, the runtime
instruments the function’s code with profile hooks that record type
information observed during execution. These hooks are placed
syntactically during the phase Parse, and show up as guard nodes
in the abstract syntax tree (or IR) anywhere that type information
may end up being useful (for example, on either side of a binary
operator like +’). See Figure [3] for an example of guard node
placement for the function in Figure[2}

Type profiling can end up being quite expensive, and so reduc-
ing the number of guard nodes to be profiled can significantly im-
prove performance of the profiling phase. Our key observation is
that if type inference can already statically determine the type of
an expression, then it is unnecessary to profile that expression. The
phase First TI therefore uses the function signature and standard
type inference rules to try and statically infer types for as many of
the guard nodes as possible. Any guard node that is successfully
typed is marked so that no profiling will be performed on that node
during the phase Profile.

Of course, there will be many nodes that cannot have their
types inferred (or inferring their types is only possible through very
complex analysis), such as most object property accesses, untyped
array indexing, and function call results. These guard nodes are
left unmarked and will be profiled during the profiling phase; the
resulting information will feed back into the second type inference
pass as described in the next subsection.



e
( . First T1 (Second TI ) (" Compile —
Interpr et ES Itnfer lOCadl FS Infer local Generate
Parse and Interpret giliarisinzlz N for t types using type Execute
add guards he IR ypes profiled ‘alized compiled
g J ¢ J unnecessary of guards Specialize code
guards —_ types \__code J

Figure 1. A flow graph describing the execution phases of a function. FS stands for function signatures; TI stands for type inference.
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Figure 4. Intermediate representation of foo after type inference.
Statically type inferred guards are in green.

For Figure[3] suppose that this function is called with a signature
(int, int). The first type inference pass is then able to infer
types for the variables a, b, and c. Therefore, the guards around
those variables are no longer useful and do not need to be profiled.
Figure [4] shows the same function with eliminated guard nodes
shown in green.

3.3 Phase Second TI: Type Feedback — Type Inference

In the last phase before code generation the runtime uses the type
information generated by type feedback to perform a second, more
aggressive type inference pass. This pass is identical to the first TI
pass except that guard nodes have been annotated with type infor-
mation supplied by type profiling, and the type inference algorithm
uses those annotations instead of attempting to infer the types of
the expressions under the guard nodes. This phase is similar to the
existing work by Hackett et al [18]] except that once again the type
information is augmented by the function signature.

In Figure E suppose that type feedback shows that global
is always of type int and bar() always returns a value of type
double. The second type inference algorithm takes these types into
consideration during type inference and thus can infer that variable
d is type double. Since this assumption can be invalidated at any
point in the future, the code generator places a type check to enforce
the validity of the type feedback information. Consequently, almost
all variables and expressions are type inferred at the end and only
two guards are placed in this specialization of the function.

4. JavaScript Instantiation

In this section we describe a specific instantiation of our proposed
ideas for the JavaScript language, using the research JavaScript
engine MCJS.

4.1 MC]JS JavaScript Engine

To evaluate our proposed ideas we use MCIJS, a research JavaScript
engine written in Cf. This subsection provides a summary of MCJS
and its features. MCJS is a layered architecture, as shown in Fig-
ureEI This means that the architecture splits responsibilities across
a JavaScript-specific component and a language-agnostic lower-

level VM. MCIS specifically uses the .NET Common Language
Runtime (CLR) as the lower-level VM, as implemented by Mono
[22]]. The CLR provides traditional compiler optimizations such
as instruction scheduling, register allocation, constant propagation,
common subexpression elimination, code generation and machine
specific optimizations. In addition, it provides managed language
services such as garbage collection.

Web
Javgr,ml.
Web Runtime

(Browser DOM Bindings, HTML5 APIs, JS Events,
Timers, etc.)

JavaScript II

CILJIT

JavaScript

Command line

JavaScript
Parser Optimizations|

Interpreter

Figure 5. MCIJS JavaScript Engine Architecture. CIL = Common
Intermediate Language, CLR = Common Language Runtime, and
IR = MCJS Intermediate Representation

The JavaScript specific layer is a JavaScript VM implemented
in Cf. The engine provides the standard dynamic language fea-
tures such as dynamic values, objects, types, and hidden classes.
Additionally, the engine includes the following major JavaScript-
specific components and functionalities:

e A JavaScript parser takes in JavaScript code and generates a
custom Intermediate Representation (IR) for each function in
the code.

¢ An interpreter executes the IR directly for the cold functions
during execution.

¢ A JavaScript analysis engine applies JavaScript-specific trans-
formations and optimizations for hot functions. These JavaScript-
specific optimizations include type analysis and type inference,
array analysis, and signature-based specialization. These trans-
formations augment the IR with extra information for more
optimized code generation.

¢ A Common Intermediate Language (CIL) bytecode genera-
tor generates optimized CIL bytecodes for hot functions using
the IR augmented by the previously mentioned transformations.

For this work, we extend the JavaScript-specific MCJS com-
ponents to implement the ideas described in the previous sec-
tion. MCIJS already implements signature-based dispatch; the main
changes we made were to add the type inference and type profiling
phases (i.e., phases First TI through Second T1 as described in the
previous section).



function binb2b64(binarray)

{
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var str = "";
for(var i = 0; i < binarray.length * 4; i += 3)
{

var triplet

= (((binarray[i >> 2] >> 8 * (3 - i %4)) & OxFF) << 186)
| (((binarray[i+1 >> 2] >> 8 * (3 - (i+1)%4)) & OxFF) << 8 )
[

((binarray[i+2 >> 2] >> 8 x (3 - (i+2)%4)) & OxFF);

for(var j = 0; j < 4; j++)

if(i * 8 + j * 6 > binarray.length * 32)

{
str += b64pad;
else

¥
{
str += tab.charAt((triplet >> 6%(3-j)) & O0x3F);
}
}
}

return str;

}

Figure 6. binb2b64 function from the crypto-shal.js benchmark which is used to convert an array of big-endian words to a base-64
string. The red highlighting indicates the presence of Guard nodes around the expressions.

4.2 Parse Phase: Inserting Guard Nodes

Guard nodes are inserted into a function to indicate where the
type profiler should gather type information. Rather than requiring
the runtime to transform the code midstream to insert these guard
nodes, we have the function parser in the phase Parse conserva-
tively inserts guard nodes into the function’s IR at every point that
may have a dynamic type and may benefit from type feedback. Dur-
ing interpretation these guard nodes are no-ops; their only purpose
is to provide a hook for type profiling.

Good candidates for type profiling include binary and unary
operations, object property accesses, array element accesses, func-
tion calls, and the left-hand sides of assignments. Guard nodes are
placed in all of these locations during parse time. However, recall
that these are conservative placements—the initial type inference
pass, described below, may statically infer types for some of these
guarded expressions, in which case the associated guard nodes are
marked so that the type profiler will ignore them. As an example,
Figure [6] shows the function binb2b64 from crypto-shal.js. The
red highlighting indicates the presence of guard nodes around the
expressions.

4.3 First TI Phase: Initial Type Inference

Once a function with a particular type signature is deemed hot by
the runtime, it is marked as a candidate for further optimization.
The first step is an initial type inference pass. This pass will infer
as many types as possible using the function signature and the type
inference algorithm described by Figures[7]and[§|and Algorithm [T}

Figure [/| shows the type lattice used by the type inference
algorithm. The most precise type is _L, indicating an uninitialized
value. For objects, we distinguish between function, array, null, and
non-null values. For numbers, we distinguish between character,
integer, unsigned integer, and double values. The least precise type
is dValue, which stands for dynamic value—this is the default kind
of value to use when the runtime has no static information about the
value’s type.

Algorithm|[I|shows the initialization function for the type infer-
ence pass. The local variables are initialized to _L, the parameter
symbols are initialized to the types given by the function’s type
signature, and the global variables are initialized to dValue be-
cause there is no known information about the possible values of

dValue
object double
non-null null int uint string bool undef
function array char

Figure 7. Type lattice used by our type inference algorithm.

the global variables at this point in time. The algorithm then places
the use sites of these symbols in the worklist.

The types of the expressions in the worklist are inferred us-
ing a set of typing rules, a selected subset of which are given in
Figure [8] This subset shows some of the more important infer-
ence rules used in the algorithm. The INT and BOOL rules show
how constants in the code can be used to type an expression.
Rules LSHIFT and GT show how type-specific operations can be
used to guide type inference. The ADD rule uses a helper func-
tion typeResolve to determine the type of the add operation. The
typeResolve function takes into consideration the implicit conver-
sion rules of JavaScript and returns the appropriate resultant type
of the operation. The VARASSIGN rule generates type constraints.
Once all the constraints are collected, they are solved to assign
types to the local variables. Finally, the GUARD rules correspond
to the guard nodes inserted by the parser. The rules check the type
of the expression it encloses; if the expression evaluates to dValue
then the guard is marked to be profiled by the Profile phase, other-



Algorithm 1 TypeInference(S, FS), where S gives the sym-
bols in scope and FS gives the function’s type signature.

worklist = []
for sin S do
switch s.SymbolType do
case local
I's)y=L
worklist.add(s.users)
case parameter
I'(s) = 7 from lookup(FS, s)
worklist.add(s.users)
case global
I'(s) = dvalue
end for
while worklist.length # 0 do
e = worklist.pop()
typeEval(e) > Uses the rules from Figure[§]to infer types
end while

n € Num b € Bool x € Variable e € Exp

T € Type = {dValue, object, double,non-null, function, array,

null, int,uint, char, string, bool, undef, | }

I' € Env = Variable — Type

I'n:int (INT)
I'Fb:bool (BOOL)
I'Fel < ez:int (LSHIFT)
I'He1 > ez :bool (GT)
he:r 7L (VARASSIGN)
'Fx:=e:7
ke :m T'kFes:m T = typeResolve(r1, 72) (ADD)
I'tel+e:7
I'kFe:7 7 C dValue (GUARD 1)
I'kguarde: T
I'ke:r 7 = dValue
(GUARD 2)

I' - guard e : profile

Figure 8. Selected inference rules used in our type inference al-
gorithm to generate type constraints. Algorithms [1| and [2| conflate
the type constraint generation and constraint solving—in the al-
gorithms, the VARASSIGN rule not only generates the type con-
straint, but also updates I" with the resultant type and pushes the
users of the variable x into the worklist. typeResolve is a helper
function that takes into consideration the implicit conversion rules
of JavaScript and returns the appropriate resultant type of the oper-
ation.

wise that guard node will be ignored by the Profile phase. This rule
eliminates many unnecessary guard nodes, significantly increasing
the profiler’s performance.

As an example, Figure[9]shows the function from Figure [f]after
the initial type inference with the inferred types and the eliminated
guard nodes.

4.4 Profile Phase

The type profiling phase collects type information at the guard
nodes inserted by the parser and marked by the type inference
phase 3 as worth profiling. The type information collected by this
phase is specific to a particular function and function signature.
There is only a limited opportunity for profiling the code before it
is JITed, therefore we chose to use exhaustive profiling rather than
a sampling approach (though this configuration can be modified
to use sampling if desired). We employ several heuristics to help
minimize the profiling overhead:

e Disable profiling of IR nodes that are highly dynamic in nature:
The profiler stops tracking the IR nodes that show highly dy-
namic nature, such as rapidly changing type information. We
observe this behavior in some code snippets which iterate over
the fields of an object. For such guard nodes, the profiler records
the profiled type as dValue and stops profiling them.

Efficient data structures: While designing the profiler we ob-
served that the performance of the profiler depends heavily on
the data structure that is used. In particular, we use an array-
based implementation of the profiler which significantly out-
performs a dictionary-based implementation.

Selectively enabling the profiler: We observe that many func-
tions execute only once during the initialization phase of the
JavaScript application. Therefore, we enable the profiler only
during the sixth invocation of the function code. By doing this
we ensure that we only collect profiles for functions that are
potentially hot.

4.5 Second TI Phase: Final Type Inference

Once sufficient profile information is collected, the second pass
type inference algorithm is performed in Second TI phase. In this
pass the runtime tries to type the local variables that were not
type inferred during the first pass, by using the collected profile
information.

Algorithm [2] describes the initialization function of the second
pass. This differs from the first pass because we reuse the types in-
ferred by the first pass while initializing the types of the variables
in this pass. We check whether the type of a variable is precise
enough, i.e., if the type inferred in the first pass is in the set Pre-
ciseTypes = {function, array, null, bool, char, int, undef,
string}. If it is, the algorithm initializes the variable to that type,
otherwise the algorithm initializes the type of the variable to L and
adds its users to the worklist. This helps the algorithm converge
to a fixpoint faster and avoid inferring types of variables that have
already been typed.

The type inference algorithm uses the same inference rules as
in Figure [8except for the GUARD rule. The new GUARD rule is:

T="P()

I+ guard®e : 7 (GUARD)
where P is a function that maps unique labels ¢ associated with
guard nodes to the profiled type information. This new rule shows
how the profiled type information is used to infer the type of the
marked guard nodes. The guards that were not marked (i.e., were
not used to gather type information during profiling) are treated as
no-ops during this Second TI phase.



function binb2b64(binarray(array))

{
var tab(string) = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var str(dValue) = "";
for(var i(int) = 0; i < binarray.length * 4; i += 3)

var triplet(int) = (((binarray[i >> 2] >> 8 * (3 -

%4)) & OxFF) << 16)

| (((binarray[i+1 >> 2] >> 8 * (3 - (i+1)%4)) & OxFF) << 8 )
| ((binarray[i+2 >> 2] >> 8 * (3 - (i+2)%4)) & OxFF);

for(var j(int) = 0; j < 4; j++)

if(i * 8 + j * 6 > binarray.length * 32)
{
str += b64pad;
} else
{
str += tab.charAt (( >> 6%(3-j)) & Ox3F);
}
}
}
return str;

}

Figure 9. binb2b64 function after the first type inference pass. The red highlighting indicates the presence of guard nodes around the

expressions that need to be profiled. The

nodes indicate that the guard nodes around these expressions are unnecessary and should not

be profiled. The (type) indicates the type inferred by the type inference algorithm.

function binb2b64(binarray(array))

var tab(string) = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

var str(string) = "";
for(var i(int) = 0; i < binarray.length

var triplet(int) = (((binarray[i >> 2]
| (((binarray[i+1l >> 2]
| ((binarray[i+2 >> 2]
for(var j(int) = 0; j < 4; j++)

if(i * 8 + j * 6 > binarray.length * 32)
{
str += b64pad ;
} else
{
str += tab.charAt ((triplet >> 6%(3-j)) & O0x3F)
}
}
}
return str;

}

* 4; i += 3)

>> 8 x (3 - i %4)) & O0xFF) << 16)
>> 8 * (3 - (i+1)%4)) & OxFF) << 8 )
>> 8 * (3 - (i+2)%4)) & OxFF);

Figure 10. binb2b64 function after the first type inference pass. The red highlighting indicates the presence of Guard nodes which were

profiled and

indicates the type profiled by the profiler. The (type) indicates the type inferred by the type inference algorithm after the

first pass. The (type) indicates the type inferred by the type inference algorithm after second pass.

As an example, in Figure[[0]we see that stz is now type inferred
to be a string based on the observed types of guards around the
b64pad and tab.charAt () expressions.

4.6 Compile Phase: Specialized Code Generation

In this section we discuss the techniques used in generating type
specialized Common Intermediate Language (CIL) code in MCJS.
After the second type inference pass, the runtime passes the inter-
mediate representation (IR) of the code and the type environment I"
to the specialized code generator. The code generator maps prim-
itive types such as int, bool, double, char, and uint to native
CIL primitives. This ensures that the operations on them can be
applied natively and are therefore faster.

After generating code for the expression enclosed in a tagged
guard node, a check is added in the code to compare the observed
type at execution time with the profiled type. The types inferred
in the second pass are valid as long as the checks hold. If the
observed type during the execution doesn’t match the type for
which the code was specialized, the runtime bails out and calls
a deoptimization routine. The deoptimization routine captures the
current state of the value stack and current values of the variables
and reconstructs a new callframe. Once this is done, the execution
shifts to the interpreter, which executes the function using the new
callframe. This operation is expensive and must be avoided as
much as possible. Therefore, capturing accurate profiles is very
important.



Algorithm 2 Typelnference(S, FS, I'1), where S gives the sym-
bols in scope, FS gives the function’s type signature and I'; is the
type environment from initial type inference.

worklist =[]

for sin S do
switch s.SymbolType do
case local

if ' (s) € PreciseTypes then
I'(s)=T1(s)

else
I'(s)=L1L
worklist.add(s.users)

end if

case parameter
if I (s) € PreciseTypes then
[(s)=T1(s)
else
I'(s) = 7 from lookup(FS, s)
worklist.add(s.users)
end if
case global
I'(s) = dValue
end for
while worklist.length # 0 do
e = worklist.pop()
typeEval(e) > Uses the rules from Figure[§]to infer types
end while

In the case of the example in Figure[10} since str is now type in-
ferred as a string, the code generator does not add checks around
it. With str being a local variable, we know its type is only in-
fluenced by the observed types of b64pad and tab.charAt().
Since we already have runtime checks around them, it is unnec-
essary to check for the type of str as well. This small optimization
enables the runtime to reduce the number of unnecessary checks
in the code. The total number of checks in the final CIL code for
binb2b64 is reduced from nine to seven.

5. Evaluation

In this section we describe our evaluation strategy and compare var-
ious combinations of our optimizations against a baseline MCJS
implementation. Throughout this section, we abbreviate type in-
ference as TI, type feedback as TF, function signatures as FS and
guard elimination as GE. We indicate whether the optimizations
are enabled or disabled using + or - respectively. Table[T]shows the
MCIS configurations on which these experiments are carried out.

We choose the TI- TF+ FS- GE- MCIJS configuration because
it is in the same vein as V8’s strategy for performing type special-
ization. In this configuration, MCJS performs pure type feedback
without any type inference. Though V8’s Crankshaft compiler per-
forms various other optimizations and performs a variation of type
inference based on the profiled types, we believe this configuration
is a fair representation of Crankshaft’s type specialization strategy
based on the ordering of different phases.

We choose the TI+ TF+ FS- GE- MCIJS configuration because,
it is in the same vein as the SpiderMonkey’s strategy of perform-
ing type specialization. In this configuration, MCJS performs type
feedback based type inference without considering the types in
function signatures. The types of function arguments are initialized
to dValue during the type inference phase. Though SpiderMon-
key’s Jaegermonkey compiler performs various other optimizations
such as single pass SSA transformation, we believe that MCJS in

this configuration is a fair representation of Jaegermonkey’s type
specialization strategy based on the ordering of different phases.

We emphasize that we are not comparing MCJS with Crankshaft
or Jaegermonkey directly. Rather, we compare different type spe-
cialization strategies that happen to be used by these engines,
among many other optimizations that they implement. No direct
conclusions can be drawn from our evaluation about the relative
merits of these engines.

5.1 Experimental Methodology

We evaluate our optimizations on an AMD FX-6200 Hexa-Core
3.8GHz machine with 10GB RAM. We use Mono 3.0 as our
underlying CLR implementation for MCJS. We choose popular
JavaScript benchmark suites including Sunspider [3]], V [6] and
Kraken [4] as well as JavaScript code from 17 real world websites
and web applications to evaluate our implementation. Each of the
benchmarks is run 11 times and the data from the last 10 runs is av-
eraged to compute mean performance. We describe the benchmarks
in detail in the following subsections.

5.2 Standard Benchmarks

Figure[[T]shows the relative speedup of different MCJS configura-
tions with respect to the base configuration for the Sunspider, V8,
and Kraken benchmarks. Since Sunspider benchmarks run for a rel-
atively short period of time, each benchmark is repeated 20 times
in a loop. Unlike Sunspider, the V8 and Kraken benchmarks run for
a relatively longer period of time. Therefore, they are run without
modification.

5.2.1 Sunspider

Figure [T1] shows that MCJS with the TI+ TF+ FS+ GE+ con-
figuration performs extremely well compared to other configura-
tions for the Sunspider benchmarks, with an average speedup of
4.2x. The average execution time for the base configuration is
48.4 seconds, and the execution times range from 2 seconds for
bitops-bitwise-and to 545.3 seconds for string-tagcloud.

Type inference provides a significant performance boost for
these benchmarks, because they heavily rely on integer arith-
metic. The compiler maps those JavaScript numbers that are
inferred to be integers to CLR integer primitives. This opti-
mization enables type specialized x86 integer operations in the
generated code. This further enables x86 specific optimizations
such as common subexpression elimination and faster integer
arithmetic using bitwise shift operators. Therefore, benchmarks
like bitops-3bit-bits-in-byte, bitops-bits-in-byte and
math-spectral-norm perform an order of magnitude better using
the TI+TF+ FS+ GE+ configuration.

When compared to the TI- TF+ FS- GE- strategy, all of the type
inference based approaches perform better. This can be attributed
to the constant boxing and unboxing of values required by the pure
type feedback based approach. When compared to the TI+ TF+ FS-
GE- strategy, the configurations with function signatures enabled
perform better. This shows that use of function signatures during
type inference improves application performance.

5.2.2 Kraken

We see an average speedup of 1.3x for the T+ TF+ FS+ GE+
configuration. The run times vary from 0.5 seconds to 559 seconds
for the base configuration with an average execution time of 66.1
seconds.

In contrast to Sunspider, the Kraken benchmark suite heavily
relies on global arrays and array element manipulation. The T+
TF+ FS+ GE+ configuration performs well on the crypto subset

' MCIS does not support typed arrays. Therefore, we do not evaluate our
implementation on Octane benchmarks.



MCJS configurations || Description
TI- TF- FS+ GE- MCIJS does not perform type inference or type feedback. We use this as our baseline for measuring speedup.
TI- TF+ FS- GE- Enabling type feedback and disabling type inference in MCJS.

TI+ TF+ FS- GE-

Enabling type inference and type feedback and disabling function signature based TI in MCJS. In this
configuration MCJS performs both the type inference passes with the types from function arguments set to
dValue. These arguments are profiled during the profile phase.

TI+ TF- FS+ GE-
first pass type inference.

Enabling type inference and disabling type feedback in MCIS. In this configuration MCIJS performs only the

TI+ TF+ FS+ GE-

Enabling type inference and type feedback in MCJS. In this configuration the guard elimination is not enabled.

TI+ TF+ FS+ GE+

Enabling all of the type-inference-based optimizations in MCJS including guard elimination.

Table 1. Table describing various MCJS configurations which we perform our experiments on. TI = Type Inference, TF= Type Feedback,
FS = Function Signature, GE = Guard Elimination, and +/- indicate whether the respective features are enabled or not.
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Figure 11. Speedup with respect to TI- TF- FS+ GE- configuration for standard benchmark suites: Sunspider, V8 and Kraken. TI = Type
Inference, TF= Type Feedback, FS = Function Signature, GE = Guard Elimination, and +/- indicate whether the respective features are

enabled or not.

of the benchmarks, giving an average speedup of 1.6x over the
base configuration. The optimizations are less effective for the rest
of the benchmarks that rely heavily on array element manipulation.
Since the type inference algorithm does not infer the types of global
symbols, the global array access operations are not very optimized.
We are currently investigating ways to extend our type inference
algorithm to infer the types of arrays to optimize these benchmarks.

523 V8

We see an average speedup of around 1.2 x with the TI+ TF+ FS+
GE-+ configuration for the V8 benchmarks. The run times vary from
6.1 seconds to 124.1 seconds with an average execution time of
36.1 seconds. The V8 benchmarks pose a different challenge from
the Kraken benchmarks since most of them deal with global objects
and property accesses. These expressions are also not type inferred
by our algorithm. Though MCIJS using TI+ TF+ FS+ GE+ performs
well for the splay, navier_stokes, and raytrace benchmarks,
with an average speedup of 1.5x over the base configuration,
it performs rather poorly on regexp and deltablue. This poor
performance is mostly due to MCJS’s inefficient regular expression
and string library implementation. Our algorithm does not type the
properties of an object and precisely tracking such information is
difficult. We are currently working on extending our type inference
algorithm to approximately infer types of object properties.

For both the V8 and Kraken benchmarks, MCJS with guard
elimination and function signatures enabled does not perform sig-
nificantly better than the other strategies. This is because MCIJS en-
gine spends most of the time executing inefficient string and regexp

libraries. Therefore, the optimizations due to type specialization do
not show any effect on the final execution time.

80
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Figure 12. Percentage types inferred. TI = Type Inference, TF=
Type Feedback, FS = Function Signature, GE = Guard Elimination,
and +/- indicate whether the respective features are enabled or not.



5.2.4 Effect of Function Signatures

The percentage of type inferred variables is another important met-
ric which shows the effectiveness of including function type sig-
natures in our algorithm. Figure [T2] shows the percentage of types
inferred in the TI+ TF+ FS+ GE+ and the TI+ TF+ FS- GE+ con-
figurations for various benchmark suites. The use of function sig-
natures during type inference improves the percentage of types in-
ferred. For Sunspider, the percentage of local variables that are type
inferred increases from 44 % to 74 % . There is a significant increase
in this number from 26% to 60% for the V8 benchmarks. The
Kraken benchmarks also show an increase of 21% in percentage of
local variables that are type inferred.

The percentage of types inferred does not directly correspond
to the speedup obtained for V8 and Kraken benchmarks, because
these benchmarks spend a majority of the time in unoptimized parts
of the MCJS engine. For example, the JavaScript standard libraries
for strings and regular expressions are extensively used by these
benchmarks.

5.3 Real-world Benchmarks

Apart from the standard benchmark suite, we test our implemen-
tation on 17 real-world websites and web applications. We use the
record-and-replay feature of Zoomm [14], a research web browser,
to collect the traces of JavaScript that are executed in real-world
websites like Amazon, BBC, CNN, Google, Guardian and ESP-
NCricinfo at load time. These traces are then converted to pure
JavaScript files by simulating the DOM objects and their proper-
ties in terms of JavaScript objects. Since most of the JavaScript ex-
ecution happens at page load, the overhead of performing profiler
based TI optimizations is not amortized for most of these bench-
marks.

Therefore, we also use 11 benchmarks from demos submit-
ted to the JS1k [2] competition. These benchmarks are relatively
long running JavaScript applications when compared to the web-
replay benchmarks. Though these benchmarks are relatively small
in size, we believe that they are representative of core functional-
ities present in JavaScript heavy web-apps like games and anima-
tions. For these benchmarks, the DOM interactions are stubbed out
and simulated using pure JavaScript objects. For the benchmarks
that require user interaction, the events are simulated by provid-
ing them a fixed set of JavaScript event objects in a loop. The
setTimeout and setInterval functions are replaced by loops
that call the supplied function for a fixed number of iterations. We
describe the nature of these benchmarks in Table 2l

5.3.1 Web-replay benchmarks

Figure [T3] shows that our profiler based optimizations do not
speedup the web-replay benchmarks, which are the first six bench-
marks in the graph (indeed we see slowdown in some cases). This
property is seen across all configurations which use type feedback,
i.e., TF+. This is mainly because the specialized code is not exe-
cuted long enough to amortize the overhead caused by profiling.
Though web-replay benchmarks execute for an average of 4.1 sec-
onds, most of the functions are executed only a few number of
times. Therefore, the web-replay benchmarks are not optimized by
type feedback.

But MCIJS with function signature based type inference, i.e.,
TI+ TF- FS+ GE- (green bar) configuration shows speedup in most
of the benchmarks with an average speedup of 5%. This shows that
a quick function signature based type inference performs well even
during page load.

5.3.2 JS1k Demos

The final 11 benchmarks shown in Figure [13]are the JS1k demos.
These benchmarks run for a relatively longer period of time with

an average run-time of 11.3 seconds. Most of these benchmarks
perform well with type feedback enabled, except for a few excep-
tions like Conways and Sierpinski gasket where type infer-
ence without type feedback performs better.

Like most of the JavaScript in popular websites, these bench-
marks are minified using JavaScript minifiers like Google Closure
Compiler [1]] or JSCrush [3]. In addition to minifying, some of
the benchmarks use global symbols in order to save space. The
rest of them maintain local symbols in the functions. Therefore,
we see varied behavior across configurations. Kaboom, Spring
pond, Tetris, Wave graph, Breakout, and Flying windows
use global variables heavily in their code. Therefore, type inference
with type feedback performs better than type inference without type
feedback.

In comparison to other strategies, our best strategy with all
features enabled (TI+TF+FS+GE+) consistently performs better,
especially on Kaboom, Spring Pond, Breakout, and Flying
Windows. For Breakout and Spring Pond, type inference ben-
efits both the TI+TF+FS-GE- strategy and our best strategy as
compared to TI-TF+FS-GE-. However, for all these specific bench-
marks, the main advantage of our strategy compared to other strate-
gies stems from the combination of signature based type inference
and guard elimination as can be seen on Figure

5.3.3 Effect of Function Signatures

Figure[I4]shows that the effect of using function signatures in type
inference is similar to that observed for the standard benchmark
suite. For the benchmarks that heavily rely on global variables, the
use of function signatures during the type inference does not al-
ways give major benefit. For example, for benchmarks Kaboom,
Mandelbrot, Wave graph, and Conways, even though the per-
centage of types inferred with function signatures is higher than
without, we do not see much difference in execution time. This can
be attributed to typing of variables that are non-critical for perfor-
mance. In these benchmarks we observe that the the performance
sensitive parts of the code like loops use a combination of global
variables and local variables that are not typed in the first type in-
ference phase.

5.4 Effect of Guard Elimination

The number of guards eliminated is an indicator of the effectiveness
of the profiler. We measure this by collecting the number of unique
guard nodes that are profiled during the execution of the program.
We then compare the number of guard nodes eliminated due to the
guard elimination technique.

Table[3]shows the percentage of guards eliminated due to guard
elimination for each of the benchmark suites. On an average guard
elimination results in 23.5% reduction in guards profiled during
the profiling phase. As Figure [TT]and Figure [[3]show, elimination
of guards improves performance. It also helps reduce the amount
of the information collected during runtime, thereby reducing the
total memory used by the application. The elimination of guards
(hence conditional control paths) from the CIL also creates more
optimization opportunities for the underlying VM’s code generator.

5.5 Effect of First TI Phase

There are two advantages of the first TI phase. First, it helps in
reducing the number of guards that are profiled. This reduces the
time spent during collection of type profiles as well as the time
required to do the dynamic type checks. Secondly, it speeds up the
operations involving the variables that are type inferred, during the
profiling phase. Our best strategy (TI+ TF+ FS+ GE+) is 2.1 x and
1.1x faster than the strategy without the first TI phase for Sunspider
benchmarks and real-world benchmarks respectively.



Benchmarks Description

Kaboom JavaScript version of the classic arcade game Boom

Mandelbrot Animation of classic mandelbrot with user clickable interface for zooming.

Spring pond Algorithm that simulates the evolution of species of fishes in a pond and survival of the fittest.
Tetris JavaScript version of the classic Tetris game.

Wave graph Graph plotting application that plots continuous multicolored sinusoidal waves.

Breakout JavaScript version of the paddle and ball game.

Conways Animation simulating the Conway’s game of life algorithm.

Flying windows

Animation showing flying windows.

Loading spinner

Spinner animation shown during page load.

Sierpinski gasket

3D representation of Sierpinski gasket fractal.

Analog clock

Analog clock written in pure JavaScript and HTML.

Table 2. Table describing the nature of the JS1k demos used as benchmarks.
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Figure 13. Speedup of various configurations of MCJS with respect to TI- TF- FS+ GE- for real world benchmarks. TI = Type Inference,
TF= Type Feedback, FS = Function Signature, GE = Guard Elimination, and +/- indicate whether the respective features are enabled or not.

Benchmarks GE- | GE+ | % reduction
in guards
Sunspider 1203 872 27.5
V8 2053 | 2004 24
Kraken 294 177 39.8
Web replay 62 50 19.4
JS1k Demo 177 127 28.2
Average 23.5

Table 3. Percentage of guards reduced due to guard elimination
for each kind of benchmarks. GE+ indicates the configuration TI+
TF+ FS+ GE+ and GE- indicates the configuration TI+ TF+ FS+
GE- shown in Table [l Numbers on columns two and three are
absolute numbers of guards (type checks) across the corresponding
benchmark suite and the configuration.

6. Conclusion

We explore the phase interdependency between the two most im-
portant methods used for type specialization of dynamic languages,
type feedback and type inference. Our analysis shows that type
feedback can improve the accuracy of type inference (as shown in

previous work), but also that type inference can also significantly
reduce the overhead of type feedback (during profiling) and type
checks (during execution), resulting in overall more accurate and
faster type analysis.

This paper proposes a novel strategy for combining type infer-
ence and type feedback in a way that reduces the overhead and
improves the performance of both methods. In this strategy, two
passes of type inference are applied, both before and after type
feedback (profiling). The first type inference pass significantly re-
duces the profiling overhead during the type feedback phase. On the
other hand, the reduced type feedback collected is then used by the
second type inference pass to highly specialize the generated code.
The key enabler for this multi-phase efficiency is syntactic guard
instructions inserted at parse time into the IR, representing the pos-
sible profiling sites. These guards nodes are pruned and marked
during the first type inference and type profiling phases. This com-
bined strategy also employs function type signatures to further im-
prove the accuracy and reduce the overhead of both type inference
and type feedback methods.

We evaluate the proposed combined function signature based
type inference and type feedback strategy on a large set of tradi-
tional benchmarks (including Sunspider, Kraken and V8) and re-
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respective features are enabled or not.

alistic web application benchmarks (including Amazon, BBC and
JS1k demos). The results show that our proposed method speeds
up the standard benchmarks by between 1.2x and 4.2x over the
base implementation that does not perform type feedback or type
inference based optimizations. For web-replay benchmarks, which
represent the JavaScript code executed during website load, simple
function signature based type inference gives an average speedup of
5%. In the case of JS1k demo benchmarks, which run for a longer
duration, we observe an average speedup of 1.6x. Further more,
this combined strategy is able to infer the types of symbols in the
hot functions very accurately (between 60% and 80% of all vari-
ables) for both standard benchmarks and web applications. More-
over the combined strategy greatly reduces the overhead of both
type profile sites during profiling and type checks during execution
(by about 23.5%).
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