HANDLING COMPLEX VHDL SEMANTICS WITH AN OO INTERMEDIATE FORMAT

Dara Rahmati, Abolfazl Salimi Zebardast, Mohammad H. Reshadi, * Zainalabedin Navabi
Electrical and Computer Engineering Department, Faculty of Engineering / University of Tehran /
Tehran, Iran
{dara, salimi, reshadi} @cad.ece.ut.ac.ir
* Northeastern University / Boston, MA 02115
Tel: 617-373-3034; Fax: 617-373-8970; navabi@ece.neu.edu

ABSTRACT

One of the most important problems for integrating CAD
tools is sharing the design information between various
tools and environments. Using a standard intermediate
format makes the interfacing and processing very easy so
that all the applications may start their own processing
from Intermediate formats. We have used CHIRE
(Compiled HDL Intermediate Representation with
Extensibility) intermediate format, which is a revision of

AIRE/CE' and have implemented a VHDL analyzer that
generates the CHIRE intermediate format and covers the
whole grammar. It also has a powerful semantic checking
capability. In this paper we will propose our algorithm of
semantic checking and illustrate its steps using a very
complicated example for challenging aspects of semantic
check in VHDL. Being a good example of using CHIRE,
It also implicitly demonstrates the benefits of using an
object-oriented format for CAD tools.

1. INTRODUCTION

There are many unique features in VHDL that makes its
processing very difficult. It has a context sensitive
grammar and is a strongly typed language. On the other
hand function overloading in VHDL can be done even
through return type or actual parameter indications.
Array and record aggregates, different kinds of parameter
association, slice names, resolution function and

' The version of AIRE/CE (Advanced Intermediate

Representation with Extensibility/Common Environment) being
discussed in this paper is the version that is publicly circulated
on the Web [3]), and several companies commercially use
versions of AIRE/CE, which may differ from the publicly
available draft. AIRE is a trademark of FTL Systems.

universal types are other complex topics in a VHDL
analyzer. Using an OOIF (Object Oriented intermediate
format) such as CHIRE has two important aspects, first;
through object oriented techniques, complex tasks
mentioned, are made easy and manageable; and second,
analyzer can focus on covering the whole grammar and
producing a CHIRE structure in the memory that can be
used by different tools which work based on VHDL. In
Section 2 and 3 we propose a brief description of CHIRE
OOIF and the essential points of VHDL analyzer and its
unique features and the difficulties arises in
implementing a VHDL analyzer, since understanding the
structure of this memory representation and the task of
analyzer is essential in order to understand and use the
remaining of the paper. In section 4 we describe our
algorithm of semantic checking of VHDL and at last the
improvements and conclusion.

2. CHIRE OBJECT ORIENTED INTERMEDIATE
FORMAT (OOIF)

Processing a binary format is not only much easier than
that of a source code but also provides better means of
interoperability and protecting the intellectual property.

CHIRE came to existence when we tried to solve the
deficiencies of AIRE/CE (for more information refer to
[1]{2]{3]). This memory representation is an OOIF and is
designed to support VHDL, VHDL-AMS, Verilog, and
other languages. Worked into CHIRE is extensibility
capability, which makes this standard adaptable to new
applications.

All classes in CHIRE are inherited directly or
indirectly from a class named MR (Memory
Representation), and the graph of compiled design
(memory representation) has many members of type
MR*. There are five levels of inheritance in the hierarchy
of CHIRE and they have been designed to achieve the

1273 -



best capabilities of object-oriented design concepts such
as inheritance, polymorphism and virtual functions and
there are about three hundred different classes. (For more
information of the detailed structure of the CHIRE go to
references [3][6]). In next sections we describe the role of
the VHDL analyzer and a perspective of a generated
CHIRE memory representation as an example.

Entity tester is end tester;
architecture checker of tester is
type bit2 is array(3 to 2*2) of bit;
function f(a,b:bit) return bit2 is
begin

return ("00");
end;
function f{c,d:bit) return bit2 is
begin

return ("11");
end;
function "+"(a,b:bit2) return bit2 is
begin

return ("00");
end;
function "*"(a,b:bit2) return bit2 is
begin
return ("00");

end;
signal a,b,c,d:bit2;
signal g,h:bit;
begin

a<=b * (g,h) + f(g,d=>h);
end checker;

Figure 2-1: An example to demonstrate semantic
checking

3. ANALYZER AND SEMANTIC RULES OF VHDL

3.1. Generating CHIRE

Consider the VHDL source code in Figure 2-1. Here the
intermediate format that is generated is CHIRE. The
summarized memory representation that is generated for
the source code is illustrated in Figure 3-1. For every
individual concept or construct in VHDL grammar, there
usually exists a corresponding CHIRE class. When the
analyzer recognizes each syntactic rule, it generates the
appropriate instances of the corresponding CHIRE classes
in the memory and will set the links between these
objects. The process of CHIRE memory representation
construction is completed when complex task of
semantics checking is done. This is fully described in
section 4. So we summarize the tasks of a VHDL
analyzer as checking the syntax, producing CHIRE and
finally semantic checking.

3.2. VHDL generality and its Context sensitive and
complex semantic rules

VHDL is a modeling language, that is, one can model
different processes in VHDL, (although it has been
mainly designed to be used for modeling digital circuits)
and this is possible because of the several utilities it offers
to the programmers, such as various user defined types,
functions, procedures and virtual functions by some
means, Therefore strict restrictions and wide prospect
have lead VHDL to one of the most difficult languages to
be analyzed (not compiled!). The most important part of
semantic checking is type checking. now consider the
signal assignment box in Figure 3-1 which is shown in

details in Figure 3-2.

The example illustrates the typical semantic check
algorithm for all VHDL statements and implicitly shows
the benefits of using CHIRE in the syntax tree.

1274 -



Library Unit List

Entity Declaration
Name="tester”
PortList=NULL

Type Declaration
Name="bit2”

Function Declaration
Name="1"

o

Architecture Declaration

Arch. Dec. List T Arch. Stat. List

Signal Declaration
Name="h"

Figure 3-1:The simplified CHIRE memory representation for source code in Figure 2-1, the shaded box will be
illustrated in detail in Figure 3-2.

Target of
Assignment

Figure 3-2: The detailed structure for the shaded box in
Figure 3-1 and its corresponding
signal assignment in Figure 2-1.

4. HANDLING SEMANTIC CHECKING WITH
CHIRE

4.1. Statement Semantic Checking

A virtual function named SemanticCheck() has been
implemented in the super class of all statement classes
and is overridden for all kinds of statement classes. This
function is called when each of the statements in the
analyzer is parsed successfully, i.e. for every kind of
statements the corresponding semantic checker is
identified and called in runtime to check the semantic
restrictions of the statement. In fact we call a single
function named SemanticCheck() to carry out the whole

semantic checking process of a VHDL file. This function
will call all the corresponding SemanticCheck() functions
for the memory representation of other statements. Here
we will describe the signal assignment semantic checking
as a good example of this process. It also illustrates the
other special and powerful concept in our algorithm
identified as type checking, which is an essential process
to check and manipulate the types of expressions. Figure
4-3 describes the simplified semantic check function for
the concurrent conditional signal assignment in VHDL.
The SemanticCheck() functions, shown in this figure,
mainly uses the TypeCheck() function. The TypeCheck()
function is again a virtual function that has been declared
virtually in the super class of all expression classes and
have been overridden in all expression classes differently

to handle the process of type checking. Figure 4-2 shows
a template for this function.

4.2. Expression Semantic Checking

Most of the programming languages have a context free
grammar and in contrast, VHDL grammar is context
sensitive mainly in its expression region, that is, the type
of an expression may be defined or changed by each of its
sub elements, to address this shortly consider the

expression in Figure 4-1.

"000"+"001"+"010"+...+"111"+b3

Figure 4-1: An example to demonstrate context
sensitivity of VHDL grammar

1275 -



If the type of b3 is a bit vector of length three all
other statements are treated as bir vectors ,but if b3 is a
qir vector (git is a quad type which have four values
‘0°,’1’,’2’,°X’), then all other expressions are treated as
git vectors and therefore for each of the "+"s the proper
operator (predefined or overloaded) should be called, this
requires some type lists to be transferred in the process of
type checking for expressions. Consider the list transfers
in function in Figure 4-2.

TypeCheck(PassedTypeList)
{

return ReturnTypeList

Figure 4-2: A template for describing the
TypeCheck() function of different classes

When TypeCheck() function is called for an element,
The PassedTypeList indicates the possible types of the
corresponding element. The RerurnTypeList includes
those types the element can actually be. In this case the
ReturnTypeList is a subset of the PassedTypeList. If the
PassedTypeList is NULL it means that the corresponding
element should only return all the types that it could be
and there isn't any force for its type. Now let’s see how
SemanticCheck() function utilizes the TypeCheck()
function. Figure 4-3 shows a simplified version of this
function for a signal assignment statement.

SignalAssignment::SemanticCheck()

{

Listl = Target . TypeCheck( NULL ),
List2 = RightHandSide . TypeCheck( List1 );

}..

Figure 4-3: SemanticCheck() function for class
SignalAssignmeent

As it is seen first the TypeCheck() function with the
NULL parameter for the left hand side of assignment is

called. In our example the execution of this function
should search in the CHIRE memory representation to
find the declaration of the left hand side signal ("a”),
which in fact will be the memory representation of the
statement in Figure 4-4.

signal a,b,c,d:bit2;

Figure 4-4: Declarations of signals a, b, ¢ and d.

It then will find type "bit2" for "a"” and returns it in
List]. List] is then passed to the TypeCheck() function of
the right hand side of the assignment and as shown in
Figure 3-2, its kind is a "+" operator. In the TypeCheck()
function implementation of "+" operator the following
tasks are done. First all the "+ " operator declarations that
are visible to this expression are found and those that do
not have a return type of "bit2” are deleted. In this
example there is only one "+” operator that returns
"bit2", now the same tasks are done for the left operand
“*”_These calls finally reach to “b” and force it to be the
“bit2” type. The implementation of TypeCheck() function
for “b” is the same as the left hand side of assignment
“a"” therefore it searches for the declaration of "b" and
then returns a list containing "bit2" to it's caller in the "*”
operator. The "*” operator then makes another list like
the one made for the left operand and calls the
TypeCheck() function for its right operand which is an
array aggregate. In the implementation of TypeCheck()
function for aggregates, all the TypeCheck() functions for
the elements of the aggregate should be called. Here the
type "bit2" which is an array has been passed to the
aggregate therefore the declaration of the type "bir2”
should be found to identify the type of the sub elements of
the array. This is infact the memory representation of
code shown in Figure 4-5.

type bit2 is array(3 to 2*2) of bit;

Figure 4-5: Declaration of array bit2 with static
expressions in range type definition part

It is seen that the type of the sub elements of the
array is “bit” and the size of the array had been declared
by two static expressions “3” and “2*2”. However there
are virtual functions that can evaluate the value of a static
expression for all the classes that may appear in a static
expression. So the size of "bit2"” is then evaluated by these

1276 -



functions and the result is (2¥2-3)+7=2, Therefore this
aggregate should exactly have 2 elements and the type of
these elements is "bit". In the TypeCheck() function of the
aggregate, if no error is produced, a list containing type
“bit2” is returned back to the caller of the TypeCheck()
function of the aggregate which is the "*” operator. The
%" gperator that have received two lists from it's left and
right operands, compares them with the visible "*”
operator and produces error messages if needed. After
this step the TypeCheck() function of the "*” operator
returns a list containing a "bir2” to it's caller ("+”
operator). This “+" operator now has finished the call to
it's left operand and is ready to call the TypeCheck()
function for its right operand. Its right operand receives a
list containing "bit2"” and as it is seen in Figure 3-2 it is a
function call corresponding to the expression in Figure
4-6.

< +H(g,d=>h)

Figure 4-6: The function call with formal parameter
indication of expression in Figure 2-1

Like “*” or “+” operators the TypeCheck() function
of the function-call searches all the functions named "f"
which have return type of "bit2"”. In this example it finds
two functions shown in Figure 4-7.

function f(a,b:bit) return bit2 is
begin
return ("00");
end;
function f(c,d:bit) return bit2 is
begin
return ("11");
end;
Figure 4-7: Implementation of the two “f”” functions

Therefore it makes a list containing the type list in Figure
4-8a to be passed to TypeCheck() function of it's first
element "g" and a list containing the type list in Figure
4-8b to be passed to TypeCheck() function of it's last
element "d=>h". The first call of TypeCheck() function
only will check the type "bit” since it doesn't have any

formal part, but the last call of TypeCheck() function
should also check the formal name "d” of function call to
recognize which element of the passed list should be
selected. (It is a part of sub program overloading feature
of VHDL language that overloading can be done throw
the name of the formals and is described in page 25 of
VHDL 93 language reference manual [4]).

{(a,"bit"),(c,"bit")} {(b,"bit"),(d,"bit")}

Figure 4-8: a, b) The Type Lists to be passed to the
first and second association parameters of function
call in Figure 4-6

At last this TypeCheck() function will return a "bit2"
to it's caller which is "+" operator and then again the "+”
will return a "bit2” to its caller which is the
SemanticCheck() function of the signal assignment
statement. The signal assignment statement has received
"bir2" from it's right hand side that is of course a subset
of the list containing "bit2”, That it received from its left
hand side. Therefore it could be concluded that no error
had occurred throw the type checking and the assignment
is correct. In complex cases the type lists may contain
several type elements and most of them are MR* type.
Using virtual functions, the implementation has become
more structured and manageable. If we have a pointer
“P” of the type of MR* it’s enough to call it’s
TypeCheck()  function  using  “P->TypeCheck()”
independent of the real type of “P”. In the described
process of calling TypeCheck() functions if the types
could not be resolved or matched with the requirements
and restrictions an error message with detailed
information will be reported to the VHDL. programmer,
annotating an error in the VHDL input source file.

This example demonstrates how virtual functions in
an OOIF can simplify the development of any kind of
CAD tools. For example in a simulator different
implementation of a Simulate() function for different
classes can construct the whole execution part of the
engine.

4.3. Updating The Pending Pointers

In the described type-check process, whenever a
TypeCheck() function returns a one member
ReturnTypeList. The type of the corresponding element is
set to that single member of the list. But in cases that
there are more than one type element in the list; setting

1277 -



the type pointer of the element is postponed to the time
that a proper decision is possible. In fact whenever a node
in the syntax tree can determine its own type, it should
call other functions for its children in the tree to force
them to set their type to proper values.

5. IMPROVEMENTS AND CONCLUSIONS

We showed how different processing of the context-
sensitive grammar of the VHDL is made easier using an
OOIF. On the other hand, all VHDL based tools can start
from this IF instead of developing their own compiler.
The semantic-check algorithm presented in this paper is
heavily based on utilizing virtual functions that examine
and set the types of different elements. The proposed
structure is also useful for developing other CAD
applications that have to handle complex constructs.

6. REFERENCES

[1].A.M. Gharehbaghi, M.H. Reshadi, Zainalabedin Navabi
“Intermediate Format Standardization Ambiguities,
Deficiencies,  Portability  issues,  Documentation  and
Improvements”, Design Automation Conference 2000.

[2]. J.C. Willis, G.D. Peterson, S.L. Gregor, “TheAdvanced
Intermediate  Representation withExtensibility / Common
Environment (AIRE/CE)“,JEEE Transaction on Computer,
1998. '

[3].AIRE document Version 4.6 at

http://www.eda.org/aire/

[4]. IEEE standard VHDL Language Reference Manual, IEEE
std. 1076, 1993, The Institute of Electrical and Electronic
Engineers, New York, NY.

[5]. Draft IEEE standard Verilog Language Reference Manual,
IEEE std. 1364, 1995, The Institute of Electrical and Electronic
Engineers, New York, NY.

[6]. M. H. Reshadi, A. M. Gharehbaghi, “VHDL Intermediate
Format Representation”, CAD Lab. Report 23, University of
Tehran, August 1999

1278 -



