
A Cycle-Accurate Compilation Algorithm for
Custom Pipelined Datapaths

����������	���
����

������	�
�
��
����������������������������	���	���������

�

 ��	
���������
���

��!�

��
!�

����"�#$%#&����"�

'��	���
��(��	�
)*+�+	,�+
,���

Abstract
Traditional high level synthesis (HLS) techniques generate a datapath
and controller for a given behavioral description. The growing wiring
cost and delay of today technologies require aggressive optimizations,
such as interconnect pipelining, that cannot be done after generating
the datapath and without invalidating the schedule. On the other hand,
the increasing manufacturing complexities demand approaches that
favor design for manufacturability (DFM).
To address these problems we propose an approach in which the
datapath of the architecture is fully allocated before scheduling and
binding. We compile a C program directly to the datapath and
generate the controller. We can support the entire ANSI C syntax
because the datapath can be as complex as the datapath of a processor.
Since there is no instruction abstraction in this architecture we call it
No-Instruction-Set-Computer (NISC). As the first step towards
realization of a NISC-based design flow, we present an algorithm that
maps an application on a given datapath by performing scheduling
and binding simultaneously. With this algorithm, we achieved up to
70% speedup on a NISC with a datapath similar to that of MIPS,
compared to a MIPS gcc compiler. It also efficiently handles different
datapath features such as pipelining, forwarding and multi-cycle units.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids---
Automatic synthesis; C.1.3 [Processor Architectures]: Other
Architecture Styles---Pipeline processors; B.5.1 [Register-Transfer-
Level Implementation]: Design---Control design, Datapath design,
Styles; D.3.4 [Programming Languages]: Processors---Code
generation, Compilers, Retargetable compilers.

General Terms
Algorithms, Performance, Design, Standardization, Languages.

Keywords: NISC, scheduling, cycle-accurate compiler.

1. Introduction
Traditional High Level Synthesis (HLS) techniques take an abstract
behavioral description and generate a register-transfer-level (RTL)
datapath and controller. The generated datapath is in form of a netlist
and must be converted to layout for the final physical implementation.
Lack of access to layout information limits the accuracy and efficacy
of design decisions (or optimizations) during synthesis. For example,
applying interconnect pipelining technique is not easy during
scheduling, because wire information is not available yet. It is not also
possible to efficiently apply it after generating the datapath because it

invalidates the schedule. The growing complexity of new
manufacturing technologies demands synthesis techniques that
support Design-For-Manufacturability (DFM). However, the
interdependent scheduling, allocation and binding tasks in HLS are
too complex by themselves and adding DFM will add another degree
of complexity to the design process. This increasing complexity
requires a design flow that provides a practical separation of concerns
and supports more aggressive optimizations based on accurate
information.
We believe that the best way to achieve this goal is to separate the
generation of datapath and controller as shown in Figure 1. This new
approach combines HLS, Application Specific Instruction set
Processor (ASIP) design, and retargetable compiler techniques. First
the datapath is designed and remains fixed during compilation, then
the controller is generated by mapping (scheduling and binding) the
application on the given datapath. In this way, DFM and other layout
optimizations are handled independently from compilation/synthesis.
Furthermore, accurate layout information can be used by scheduler.

 Figure 1- Proposed custom hardware design flow.

In some aspects, the proposed design flow is similar to the
compilation of applications for processors because in both cases the
datapath is fixed during the mapping process. However, compilers
rely on instruction-set (or microcode) to abstract out the functionality
of processor’s datapath and assume that the processor translates such
abstractions to proper control signals. In our approach, the cycle-
accurate compiler directly maps the application on the given datapath
by (1) binding operations, storages, and interconnects, and (2)
scheduling the control signal values of datapath components in proper
clock cycles. Therefore, it has complete fine-grain control over
datapath and can achieve better parallelism and resource utilization.
Since we do not use predefined instruction semantics, we call the
result architecture No-Instruction-Set-Computer (NISC).
A NISC is composed of a pipelined datapath and a pipelined
controller that drives the control signals of the datapath components in
each clock cycle. The datapath can be generated in several ways. It
can be selected from available IPs or reused from previous designs. It
can also be designed manually or automatically using techniques from
HLS or AISP design that analyze the application behavior and suggest
a custom datapath. Such datapath can be iteratively refined and
optimized as shown in Figure 1. The datapath can be simple or as
complex as datapath of a processor. Figure 2 shows a sample NISC
architecture with a memory based controller and a pipelined datapath
that has partial data forwarding, multi-cycle and pipelined units, as
well as data memory and register file. Depending on the required

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

datapath
selection/
generation

application

custom
datapath

cycle-accurate
compilation

constraints

controller

features (e.g. interrupt handling) the controller is selected from a set of
predefined templates. The control values are stored in the control
memory. For small applications, they can also be generated via logic.

RF / Scratch pad

ALU MUL

Status

PC

AG

CW

offset

status

address

const

CMem

Memory

B2

B1

B3
Figure 2- A sample NISC architecture.

The core of NISC design flow is the cycle-accurate compiler that
maps the application directly on the given datapath. To show that such
a design flow is feasible, in this paper, we present an algorithm that
compiles the application by performing the scheduling and binding
simultaneously. The paper is organized as follows: related works are
reviewed in Section 2. In Section 3 we illustrate the algorithm using
an example and then describe the details of the algorithm in Section 4.
Various experiments and their results are shown in Section 5. Finally,
Section 6 concludes the paper.

2. Related works
Because the architecture style of NISC is new, little research has been
done on the mapping algorithms for NISC. However, there has been
an extensive body of work on scheduling and binding algorithms in
the area of high level synthesis, retargetable compilers.
Force directed scheduling (FDS) [1], [2] is commonly used to solve
the timed constrained scheduling problem. This algorithm, distributes
the execution of similar operations in different control steps in order to
achieve high utilization of functional units while meeting the time
deadline. Path-based scheduling algorithm [3] tries to minimize the
number of control steps needed to execute the critical paths that exist
in the given CDFG [4]. To do so, the algorithm gives emphasis to
conditional branching i.e. it starts by extracting all possible execution
paths from the given CDFG and schedules them independently. Then
the schedules of different paths are combined to generate the final
schedule for the whole design. However, the path-based approach
restricts the execution order of the operations before scheduling.
List-based scheduling techniques [5] are used to solve resource
constrained scheduling problem in which the number of resources of
different types are limited. List scheduling processes each control step
sequentially. At each control step, it tries to choose the best operation
from the list of candidate operations, subject to resource constraints.
List scheduling uses a ready-list, which keeps all nodes that their
predecessors are already scheduled. The ready-list is always sorted
with respect to a priority function. The priority function always
resolves the resource contention among operations, i.e. operations
with lower priority will be deferred to the next or later control steps.
The quality of the results produced by a list-based scheduler depends
predominantly on its priority function.
Mobility of the operation, i.e. the difference between ASAP (as soon
as possible) and ALAP (as late as possible) times, is commonly used
as the priority function in many HLS systems. Different priority
functions and heuristics have been proposed to improve the quality of
list scheduling. The proposed list scheduling algorithms in [6] and [7]
uses mobility as the primary priority functions. To break the tie among
a set of available operations with similar mobility, they assign higher
priority to those operations that contribute to the same output. Before
scheduling begins, they analyze the outputs of operations in the DFG
by constructing a set of trees (cones) that start from output nodes as

roots. However, they use a conventional scheduler that starts from
inputs and proceeds forward, and the output trees are only used to
break the tie during schedule. A similar approach is used in [8] and [9]
for scheduling on VLIW architectures. Output trees in DFG are also
used for instruction selection using the maximal-munch algorithm.
Processing the DFG backward, from outputs towards inputs, has
proven to be very fruitful. However, this idea has been mainly used in
priority functions but not the scheduling algorithm itself.
Many researchers ([10], [11], [12], [13], [14]) have also attempted to
incorporate layout information in the synthesis process, especially in
scheduling. However, similar to traditional HLS, these approaches
generate the datapath after scheduling and therefore they can only
predict or estimate layout information during scheduling.
While most HLS techniques use list-based scheduling and perform
allocation and binding separately, some approach, such as [15] and
[16], try to perform scheduling, allocation and binding simultaneously
using integer linear programming or branch-and-bound algorithms.
Although they may achieve optimal results, complexity restrains the
practical applicability of such approaches.
Getting a fixed architecture model as input is a common assumption
in retargetable compilers, mostly used for Application Specific
Instruction set Processors (ASIPs). But usually in these compilers the
architecture model is described in terms of instructions, which is a
much higher level of abstraction than the structural details of the
architecture. Even compilers such as RECORD [17] and CHESS [19]
that use a structural description of architecture, extract the higher level
instruction information for using in the compiler. The RECORD
compiler extracts behavioral model of instructions from MIMOLA
HDL [18]. They assume a horizontal microcode machine with single
cycle operation. They process the structure of the datapath from
destination storages towards source storages to extract valid register
transfers (RTs). After analyzing the controller, they reject illegal RTs
that do not correspond to an instruction, and use the remaining RTs in
the compiler. The CHESS compiler uses the nML language [20] to
extract the instruction set graph (ISG) that captures structural
resources in the architecture that are used by each instruction.
Regardless of the approaches, every compiler generates a stream of
processor instructions and assumes that the processor itself deals with
the control signals of its component. Since there is no instruction in
NISC, the compiler directly maps the program to the datapath. In this
way, compiler has complete fine-grain control over datapath and can
achieve better parallelism and resource utilization. However, not only
the compiler should generate the schedule, it should also generate the
control values of architecture component in each cycle. Therefore, the
NISC compiler must deal with much more structural details and solve
a more complex problem than traditional processor compilers.
In all HLS approaches scheduling is done mainly based on the delay
of functional units, while all or part of binding (especially interconnect
binding) is done afterwards. This is not possible in NISC and
scheduling and binding must be done simultaneously (see Section 3).
In the next section, we present an efficient simultaneous scheduling
and binding algorithm that is inspired by the benefits of backward
processing of DFG. It is very suitable for dealing with structural
details of NISC datapaths. Nevertheless, the algorithm is very general
and can be used in other domains as well.

3. Algorithm overview and illustrative example
In this section we illustrate the basis of our scheduling and binding
algorithm using an example. The input of algorithm is the CDFG of
application, netlist of datapath components and the clock period of
system. The output is an FSM in which each state represents a set of
register transfers actions (RTAs) that execute in one clock cycle. An

RTA can be either a data transfer through buses / multiplexers /
registers, or an operation executed on a functional unit. The set of
RTAs are later used to generate the control bits of components.
As opposed to traditional HSL, we can not schedule operations merely
based on the delay of the functional units. The number of control steps
between the schedule of an operation and its successor depends on
both the binding of operations to functional units (FU) and the delay
of the path between corresponding FUs. For example, suppose we
want to map DFG of Figure 4 on datapath of Figure 5. Operation >>
can read the result of operation + in two ways. If we schedule
operation + on U2 and store the result in register file RF, then
operation >> must be scheduled on U3 in next cycle to read the result
from RF through bus B2 and multiplexer M2. Operation >> can also
be scheduled in the same cycle with operation + and read the result
directly from U2 through multiplexer M2. Therefore, selection of the
path between U2 and U3 can directly affect the schedule. Since
knowing the path delay between operations requires knowing the
operation binding, the scheduling and binding must be performed
simultaneously.
Binding itself involves three subtasks: variable binding assigns a
value to a storage; operation binding assigns an operation to an FU;
and interconnect binding selects a path between two FUs, or a storage
and a FU. In our algorithm, these three subtasks are done during
schedule of each operation.
The basic idea in the algorithm is to schedule an operation and all of
its predecessors together. An output operation in the DFG of a basic
block is an operation that does not have a successor in that basic
block. We start from output operations and traverse the DFG
backward. Each operation is scheduled after all its successors are
scheduled. The scheduling and binding of successors of an operation
determine when and where the result of that operation is needed. This
information can be used for: utilizing available paths between FUs
efficiently, avoiding unnecessary register file read/writes, chaining
operations, etc.

Figure 3- Partitioning a DFG into sub-trees.

We partition the DFG of the basic block into sub-trees. The root of a
sub-tree is an output operation. The leaves are input variables,
constants, or output operations from other basic blocks. If the
successors of an operation belong to different sub-trees, then that
operation is considered as an internal output and will have its own
sub-tree. Such nodes are detected during scheduling. Figure 3 shows
an example DFG that is partitioned into three sub-trees. The roots of
the sub-trees are the output operations and are shown with dark nodes.
The algorithm schedules each sub-tree separately. If during scheduling
of the operations of a sub-tree, the schedule of an operation fails, then
that operation is considered an internal output and becomes the root of
a new sub-tree.
A sub-tree is available for schedule as soon as all successor of its root
(output operation) are scheduled. Available sub-trees are ordered by
the mobility of their root. The algorithm starts from output nodes and
schedules backward toward their inputs, therefore more critical
outputs tend to be generated towards end of the basic block (almost
similar to ALAP schedule).
Consider the example DFG of Figure 4 to be mapped on the datapath
of Figure 5. Assume that the clock period is 20 units and delays of U1,
U2, U3, multiplexers and busses are 17, 7, 5, 1 and 3 units,
respectively. We schedule the operations of basic block so that all

results are available before last cycle, i.e. 0; therefore, the RTAs are
scheduled in negative cycle numbers. In each step, we try to schedule
the sub-trees that can generate their results before a given cycle clk.
clk starts from 0 and is decremented in each step until all sub-trees of a
basic block are scheduled.

RF

B1
B2
B3

B4

U1 U2 U3
+ >>

R1

x

M1 M2

C
W

Figure 4-Sample DFG Figure 5-Sample datapath

During scheduling, different types of values may be bound to different
types of storages (variable binding). For example, global variables
may be bound to memory, local variables to stack or register file, and
so on. A constant is bound to memory or control word (CW) register,
depending on its size. A control word may have limited number of
constant fields that are generated in each cycle along with the rest of
control bits. These constant fields are loaded into the CW register and
then transferred to a proper location in datapath. The NISC compiler
determines what constant(s) should be generated in each cycle. It also
schedules proper RTAs to transfer the value to where it is needed.
When scheduling an output sub-tree, first step is to know where the
output is stored. In our example, assume h is bound to register file RF.
We must schedule operation >> so that its result can be stored in
destination RF in cycle -1 and be available for reading in cycle 0. We
first select a FU that implements >> (operation binding) then make
sure that a path exists between selected FU and destination RF and all
elements of the path are available (not reserved by other operations) in
cycle -1. In this example we select U3 for >> and bus B4 for
transferring the results to RF. Resource reservation will be finalized if
the schedule of operands also succeeds. The next step is to schedule
proper RTAs in order to transfer the value of g to the left input port of
U3 and constant 2 to the right input port of U3. Figure 6 shows the
status of schedule after scheduling the >> operation. The figure shows
the set of RTAs that are scheduled in each cycle to read or generated a
value. At this point B3 and M2 are considered the destinations to
which values of 2 and g must be transferred in clock cycle -1,
respectively.

clock→
operation↓

-3 -2 -1

a
b
c
d
e
f
g M2=?;
2 B3=?;
h B4=U3(M2, B3); RF(h)=B4;

Figure 6- Schedule of RTAs after scheduling >> operation.
In order to read constant 2, we need to put the value of CW register on
bus B3. As for variable g, we schedule the + operation on U2 to
perform the addition and pass the result to U3 though multiplexer M2.
Note that delay of reading operands of + operation and executing it on
U2, plus the delay of reading operands of >> operation and executing
it on U3 and writing the results to RF is less than one clock cycle.
Therefore, all of the corresponding RTAs are scheduled together in
clock cycle –1. The algorithm chains the operations in this way,
whenever possible. The new status of scheduled RTAs is shown in
Figure 7. In the next step, we should schedule the × operations to
deliver their results to the input ports of U2.

× ×

+

>

a b c d

e f

g

h

2

e=a×b;
f=c×d;
g=e+f;
h=g >> 2;

Clock→
operation↓

-3 -2 -1

a
b
c
d
e M1=?;
f B2=?;
g M2=U2(M1, B2);
2 B3=CW;
h B4=U3(M2, B3); RF(h)=B4;

Figure 7- Schedule of RTAs after scheduling + operation.
The left operand (e) can be scheduled on U1 to deliver its result
though register R1 in cycle –2 and multiplexer M1 in cycle –1. At this
point, there is no more multiplier left to generate the right operand (f)
and directly transfer it to the right input port of U2. Therefore, we
assume that f is stored in the register file and try to read it from there.
If the read is successful, the corresponding × operation (f) is
considered as an internal output and will be scheduled later. Figure 8
shows the status of schedule at this time. The sub-tree of output h is
now completely scheduled and the resource reservations can be
finalized.

Clock→
operation↓

-3 -2 -1

a
b
c B1=RF©;
d B2=RF(d);
e R1=U1(B1, B2); M1=R1;
f B2=RF(f);
g M2=U2(M1, B2);
2 B3=CW;
h B4=U3(M2, B3); RF(h)=B4;

Figure 8- Schedule of RTAs after scheduling h sub-tree.
The sub-tree of internal output f must generate its result before cycle
-1 where it is read and used by operation +. Therefore, the
corresponding RTAs must be scheduled in or before clock cycle –2
and write the result in register file RF. The path from U1 to RF goes
through register R1 and hence takes more than one cycle. The second
part of the path (after R1) is scheduled in cycle –2 and the first part
(before R1) as well as the execution of operation × on U1 is scheduled
in cycle –3. The complete schedule is shown in Figure 9.

clock→
operation↓

-3 -2 -1

a B1=RF(a);
b B2=RF(b);
c B1=RF(c);
d B2=RF(d);
e R1=U1(B1, B2); M1=R1;
f R1=U1(B1, B2); B4=R1; RF(f)=B4; B2=RF(f);
g M2=U2(M1, B2);
2 B3=CW;
h B4=U3(M2, B3); RF(h)=B4;

Figure 9- Schedule of RTAs after scheduling all sub-trees.
In the above example, we showed how the DFG is partitioned into
sub-trees during scheduling. We also showed how pipelining,
operation chaining, and data forwarding are supported during
scheduling of sub-trees.

4. Simultaneous scheduling and binding
algorithm for custom pipelined datapaths
In this section we describe the main body of the algorithm that
performs the scheduling and binding for each basic block of the
application.
In the algorithm we use the following definitions:
For an operation op, op.result is the value generated by op and
op.operands is the list of results of predecessors of op.
For a functional unit FU, FU.output is the output port of FU and
FU.inputs is the set of input ports of FU. A functional unit may
implement multiple operations. For each operation, FU.timing

represents the delay of the unit (or its stages if it is pipelined) as well
as the duration of applying the control signals to the unit.
A path p is the list of resources that can transfer a value from one
point to another. These resources include busses, multiplexers and
registers. The timing of resources of p is stored in p.timings and is
calculated base on delay of buses or multiplexers, or setup time and
read delay of registers or register-files.
A destination dst is a storage or an input port of a functional unit.
Each basic block as a schedule status ss, where ss.RTAs(clk) stores the
set of scheduled RTAs in clock cycle clk, and ss.resTable(clk) stores
the reservation status of resources in clock cycle clk.
In the ScheduleBasicBlock function (Figure 10), before scheduling the
body of the basic block, the jump operation at the end of block is
scheduled. If the controller is pipelined, then the branch delay of the
jump operation must be filled by other operations in the block. Our
algorithm schedules operations backward, i.e. from last operation in
the basic block towards the first one. Scheduling jump before other
operations guarantees that branch delay will be filled if resource
constraints allows. In the main loop of ScheduleBaiscBlock function
(lines 6-18) the available output operations, i.e. sub-tree roots that can
generate their results at clock cycle clk, are collected and sorted based
on a priority function, such as operation mobility. During scheduling
of each of these output operations, some internal outputs may be
generated. If the schedule of the operation is successful, then the
operation is removed from sub-tree roots (Roots) and the newly
generated internal outputs are added to the list in order to be processed
later (lines 16-17). In each iteration of the loop, the clk is decreased
and available output operations are collected and scheduled until all
sub-trees in the block are processed. At the end, the sequence of
control steps in blk.ss contains the exact schedule of RTAs that
execute the basic block on the given datapath. After scheduling all
basic blocks, the FSM of controller is generated by combining the
sequence of control steps in each block based on the CDFG of the
program.
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

ScheduleBasicBlock(block blk)
 initialize the blk.ss schedule status;
 if (blk has a jump operation)
 ScheduleOperation(blk.jump, 0, blk.ss, PC);
 Roots = {output operations in blk.DAG};
 clk = 0;
 while(Roots ≠ ∅)
 AvailableOutputs = ∅;
 foreach (operation op ∈ Roots)
 if (all successor of op are scheduled after clock clk)
 AvailableOutputs = AvailableOutputs + {op};
 Sort AvailableOutputs by OperationPriorities;
 foreach (operation op ∈ AvailableOutputs)
 internalOutputs=∅;
 bind op.result
 destination dst = storage of op.result
 if (ScheduleOperation(op, clock ,blk.ss, dst))
 Roots = Roots – {op} + internalOutputs;
 clk=clk-1;

Figure 10- The ScheduleBasicBlock function
The ScheduleOperation function (Figure 11) tries to schedule an
operation op so that its result is available at dst at clock cycle clk. The
list of functional units that can execute op is stored in F and sorted by
the UnitPriorities (line 2). This priority function depends on the delay
of the unit as well as the paths from output of the unit to the
destination dst. After selecting a functional unit FU, all paths from FU
to dst are stored in P and sorted by a PathPriority. The timings of FU
and a selected path p are calculated so that the output of FU is
available at dst at clock cycle clk (lines 5-10). If FU and all of the
resources on the path p are not reserved in the ss.resTable at the
corresponding calculated times, then algorithm tries to schedule the

operands of op by calling the ScheduleOperands function. If the
schedule of operands succeeds, then selected functional unit FU and
path p are reserved (operation and interconnect binding) (lines 13-17).
We pass a copy of scheduling status (copyStatus) to function
ScheduleOperands to make sure that original status changes only if all
operands are successfully scheduled. If scheduling failed after trying
all functional units, the ScheduleOperation function tries to bind the
result of operation to a storage and schedule a read from that storage.
If the read succeeds, the operation is added to the internalOutputs for
later processing.
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

bool ScheduleOperation(operation op, clock clk, schedule status ss,
destination dst)
 F= functional units that implement op sorted by UnitPriorities;
 foreach(FU ∈ F)
 P=paths from FU.output to dst sorted by PathPriorities;
 foreach(p ∈ P)
 p.timing.end=clock;
 calculate p.timing.start;
 if (resources of p are not reserved in ss.resTable)
 FU.timing.end=p.timing.start;
 calculate FU.timing.start;
 if (FU is not reserved in ss.resTable)
 copyStatus = ss;
 if (ScheduleOperands(op, FU.timing.start, copyStatus, FU))
 ss=copyStatus;
 reserve FU and p in ss.resTable;
 add corresponding RTAs to ss.RTAs;
 return TRUE;
 bind op.result;
 if (ScheduleRead(op.result, clk, ss, dst));
 internalOutputs = internalOutputs + {op};
 return TRUE;
 return FALSE;

Figure 11- The ScheduleOperation function.
The ScheduleOperands function (Figure 12) schedules the operands
of an operation op on a selected functional unit FU so that their values
are available on corresponding input ports of FU at clock cycle clk. If
an operand is a variable or a constant, then this function tries to
schedule a read from the corresponding storage. Otherwise, it calls the
ScheduleOperation function. The function succeeds only if all
operands can be scheduled.
00
01
02
03
04
05
06
07
08
09
10

bool ScheduleOperands(operation op, clock clk, schedule status ss, functional
unit FU)
 foreach(operand o ∈ op.operands)
 destination dst= FU.inputs corresponding to o;
 if (o is a variable or a constant)
 bind o to a storage;
 if (! ScheduleRead(o, clk, ss, dst))
 return FALSE;
 else if (! ScheduleOperation(o, clk, ss, dst))
 return FALSE;
 return TRUE;

Figure 12- The ScheduleOperands function.
In the ScheduleRead function (Figure 13), the best available path that
can transfer a value from its storage to the specified destination at
clock cycle clk is selected and scheduled.
00
01
02
03
04
05
06
07
08
09

bool ScheduleRead(value v, clock clk, schedule status ss, destination dst)
 P=paths from storage of v to dst sorted by PathPriorities
 foreach(p ∈ P)
 p.timing.end=clk;
 calculate p.timing.start;
 if (resources of p not reserved in ss.resTable)
 reserve p in ss.resTable;
 add corresponding RTAs to ss.RTAs
 return TRUE;
 return FALSE;

Figure 13- The ScheduleRead function.

5. Experiments
In this section we report preliminary results of implementing our
algorithm in a NISC compiler that is being developed as part of the

NISC based design tool set. The input to the compiler is the netlist of
datapath components as well as the application written in ANSI C. To
evaluate our algorithm we compiled a set of benchmarks on a set of
architectures and evaluated the schedules. For benchmarks we used
the bdist2 function (from MPEG2 encoder), DCT 8x8, FFT, and a sort
function (implementing the bubble sort algorithm). The FFT and DCT
benchmarks have data independent control graphs. The bdist2
benchmark works on a 16×h block and we used h=10 in our
experiments. For the sort benchmark, we calculated the best case and
worst case results for sorting 100 elements. Among these benchmarks,
FFT has the most parallelism and sort is a fully sequential code. A
demo of the tool and the details of benchmarks and architectures is
available at [21].

offset

const

status

address
PC CMem

AG

Register File

ALU MUL Mem

Figure 14- Datapath with simple interconnects.

To evaluate the effect of interconnects, we used a set of architectures
that had the same number and type of functional units and storages but
had different interconnect configuration. We started with an
architecture with no pipelining (NP) similar to Figure 14. Then we
added controller pipelining (CP) by adding CW and status registers in
front of control memory and address generator (AG), respectively. We
then added datapath pipelining (CDP) by adding registers to the
input/output ports of functional units and data memory. At the end, we
added data forwarding (CDPF) by adding interconnects from output
of functional units to the input registers of other functional units. The
final architecture is similar to what is shown in Figure 15.

offset

const

address

status

PC CMem

AG

Register File

ALU MUL Mem

C
W

Figure 15- Datapath with complex interconnects.

We scheduled the benchmarks on the above datapaths and verified the
results by simulating the generated Verilog files. We then synthesized
the generated architectures on a Xilinx VirtexProII FPGA package
using the Xilinx ISE tool set. After placement and routing, retiming,
and buffer to multiplexer conversion; the tool reported 12.4, 8.9, 5.2,
and 5.6 ns for the clock periods of NP, CP, CDP, and CDPF
architectures, respectively. The number of execution cycles and total
execution time of each benchmark on different architecture is shown
in Table 1. While adding pipelining reduces the clock period, it may
increase the cycle counts especially if there is not enough parallelism
in the benchmark. Therefore, except for FFT, the cycle count of other
benchmarks increases when we move from NP, to CP and CDP.
However, the overall exaction time has improved in all cases, except
in sort which is a fully sequential code. The considerable decrease of
execution cycle counts from CDP to CDPF shows that the data
forwarding paths between components are utilized well by our
scheduling algorithm.

Table 1- Cycles, execution time and speedup of benchmarks.
 Cycle count Total execution time (us) Speedup vs. NP
 NP CP CDP CDPF NP CP CDP CDPF NP CP CDP CDPF

bdist2: block 16x10 6143 6326 7168 5226 76.2 56.3 37.3 29.3 1.00 1.35 2.04 2.60
DCT 8x8 10450 11764 14292 13140 129.6 104.6 74.4 73.6 1.00 1.24 1.74 1.76
FFT 219 220 218 166 2.7 2.0 1.1 0.9 1.00 1.35 2.45 3.00
Sort: Best case (N=100) 25447 35349 84161 74162 315.5 314.6 437.6 415.3 1.00 1.00 0.72 0.76
Sort: Worst case (N=100) 35149 49902 98714 88715 435.8 444.1 513.3 496.8 1.00 0.98 0.85 0.88

We also evaluated the schedule of benchmarks on two processor-like
NISC architectures. The datapath of NM1 architecture is the same as a
MIPS M4K Core [22]. The NM2 architecture extends the datapath of
NM1 by adding one more ALU and 2 more register file read ports.
Because of their similar datapath, the clock periods of these
architectures are similar. The second, third and forth columns in Table
2 show the execution cycle counts of benchmarks on MIPS, NM1,
and NM2, respectively. The last three columns show the
corresponding speedups vs. MIPS. We used a gcc-based cross
compiler to compile and optimize the benchmarks for MIPS. Note that
although NM1 and MIPS have the same datapath, the benchmarks run
up to 70% faster on NM1. The parallelism in NM1 (and MIPS) is
limited by the number of register file read/write ports. However, our
algorithm has well utilized the pipelining and data forwarding paths
between components and achieved the speedup by avoiding accessing
the register file. Our scheduling algorithm did utilize the extra
resources in NM2 (especially for FFT) and the result was up to 100%
faster than MIPS.

Table 2- Cycles and speedups on MIPS and MIPS-like NISCs.
 Cycle count Speedup vs. MIPS
 MIPS NM1 NM2 MIPS NM1 NM2

bdist2: block 16x10 6727 5204 4363 1.00 1.29 1.54
DCT 8x8 13058 10772 10644 1.00 1.21 1.23
FFT 277 162 133 1.00 1.71 2.08
Sort: Best case (N=100) 45642 40103 40004 1.00 1.14 1.14
Sort: Worst case (N=100) 50493 54656 54557 1.00 0.92 0.93

We neither used any optimization (such as loop unrolling) nor
modified the source code of benchmarks to increase the parallelism.
However, the results indicate that our compile utilizes the parallelism
in the application and the datapath, and its results are comparable or
better than that of a standard gcc-base compiler.

6. Conclusion
In this paper we presented (1) a design flow in which we map an
application directly on a given datapath and generate the
corresponding controller (2) and an algorithm for doing so.
Our approach is different from compiling for processors because in
processors, the compiler uses the instruction (or microcode)
abstraction to control the datapath and assumes that the processor
translates instructions to control signals. In our approach, the
architecture has no instruction abstraction and the cycle-accurate
compiler must generate the control signals of datapath components in
each clock cycle. We call this architecture No-Instruction-Set-
Computer (NISC). A NISC compiler has complete fine-grain control
over datapath and hence can achieve better parallelism and resource
utilization.
The NISC approach is also different from traditional HLS because in
HLS, the datapath and controller are generated after scheduling and
binding; while in NISC, the datapath is available before scheduling
and binding and the controller is generated afterwards. NISC
simplifies DFM and use of IPs, and enables complete coverage of
high level languages as well as more efficient and aggressive
optimizations such as interconnect pipelining.
We also presented a compilation algorithm that traverses the DFG
backward and performs scheduling and binding simultaneously. The
algorithm inherently supports pipelining, data forwarding and
operation chaining. Compared to a gcc-based MIPS compiler, our
algorithm generates up to 70% faster results for the same datapath.

Nevertheless, our algorithm is general and can be used in other
domains.

7. References
[1] P. G. Paulin, J. Knight, "Algorithms for High-Level Synthesis",

IEEE Design & Test of Computers, 1989.
[2] P. G. Paulin, J. P. Knight, "Force-Directed Scheduling for the

Behavioral Synthesis of ASIC’s", IEEE Transactions on Computer-
Aided Design, 1989.

[3] R. Camposano, "Path-Based Scheduling for Synthesis", IEEE
Transactions on Computer-Aided Design, 1991.

[4] A. Orailoglu and D.D. Gajski, “Flow graph representation”, Design
Automation Conference, 1986.

[5] D. Gajski, N. Dutt, A. Wu, S. Lin, "High-Level Synthesis
Introduction to Chip and System Design", Kluwer Academic
Publishers, The Netherlands, 1994.

[6] S. Govindarajan, R. Vemuri, "Cone-Based Clustering Heuristic for
List-Scheduling Algorithms", Proceedings of European Design &
Test Conference (ED&TC), 1997.

[7] A.M. Sllame, V. Drabek, "An efficient list-based scheduling
algorithm for high-level synthesis", Proceedings of the Euromicro
Symposium on Digital System Design, 2002.

[8] E. Ozer, S. Banerjia, “Unified Assign and Schedule: A New
Approach to Scheduling for Clustered Register File
Microarchitectures”, MICRO-31, 1998.

[9] J. R. Ellis, “Bulldog: A compiler for VLIW architectures”,
Cambridge, MA: The MIT Press, 1986.

[10] M. Xu, F. J. Kurdahi, "Layout-driven high level synthesis for FPGA
based architectures", DATE, 1998.

[11] S. Y. Ohm, F. J. Kurdahi, N. Dutt, M. Xu, "A comprehensive
estimation technique for high-level synthesis", International
Symposium on Systems Synthesis, 1995.

[12] D. Kim, J. Jung, S. Lee, J. Jeon, K. Choi, "Behavior-to-placed RTL
synthesis with performance-driven placement", International
Conference Computer Aided Design, 2001.

[13] J. Zhu, D. Gajski, "Soft scheduling in high level synthesis", Design
Automation Conference, 1999.

[14] W.E. Dougherty, D.E. Thomas, "Unifying behavioral synthesis and
physical design", Design Automation Conference, 2000.

[15] B. Landwehr, P. Marwedel, and R. Dömer, "OSCAR:Optimum
Simultaneous Scheduling, Allocation and Resource Binding Based
on Integer Programming", Proc. of European Conference on Design
Automation, 1994.

[16] N. Berry, B.M. Pangrle, "SCHALLOC: an algorithm for
simultaneous scheduling & connectivity binding in a datapath
synthesis system", Design Automation Conference, 1990.

[17] R. Leupers, P. Marwedel, "Retargetable Generation of Code
Selectors from HDL Processor Models", European Design and Test,
1997.

[18] P. Marwdedel, “The MIMOLA Design System: Tools for the Design
of Digital Processors”, Design Automation Conference, 1984.

[19] J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, H. De Man, "A
Graph Based Processor Model for Retargetable Code Generation",
European Design and Test Conference, 1996.

[20] A. Fauth,J. Van Praet, M. Freericks, "Describing instruction set
processors using nML", European Design and Test Conference,
1995.

[21] http://www.cecs.uci.edu/~reshadi/projects/nisc/
[22] MIPS32® M4K™ Core, http://www.mips.com

