

C-Based Design Flow: A Case Study on G.729A for Voice over Internet Protocol (VoIP)
Mehrdad Reshadi, Bita Gorjara, Daniel Gajski
Center for Embedded Computer Systems (CECS),

University of California Irvine, CA 92697, USA.
{reshadi, gorjiara, gajski}@cecs.uci.edu

Abstract
In this paper we present the design of a G.729a codec in a C-

based design flow. The codec is used in VoIP applications for
sending speech over internet protocol. We started from the standard
reference C implementation and generated several customized
designs using the NISCT C-to-RTL toolset. Our final designs could
run at very low clock frequencies (11 MHz for the decoder and 30
MHz for the coder) while meeting the timing requirements of the
standard. We present these designs and the corresponding C-based
design flow in this paper.
Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and Application-Based Systems
C.4 [Computer Systems Organization]: Performance of Systems - Design studies
General Terms
Design, Algorithms
Keywords
NISC, HLS, ASIP, VoIP, G729A, C-to-RTL, C-based design flow

1. Introduction
Algorithm-level synthesis and C-based design flow enable design at

higher-level of abstraction resulting in higher productivity and shorter
design times. Typically a C-description can be turned into RTL
implementation using either Application Specific Instruction-set
Processors (ASIP)[1] or High-Level-Synthesis (HLS)[2]. In ASIP,
such as Tensilica [3], LISA [4][5], and EXPRESSION [6]; a base
processor is extended by adding custom instructions that can improve
the performance of a specific application. Such approaches usually
support the complete C grammar and are useful for large applications.
On the other hand, in HLS, the C-description is directly translated to a
micro-architecture (datapath and controller) that executes only the
given application. Such approaches usually support a sub-set of the C
grammar and are useful for small applications. Many variations of
ASIP and HLS have been studied by researchers or offered as
commercial products.

In this paper, we show the results of designing a complete G.729
algorithm which is used in Voice over Internet Protocol (VoIP)
applications. In a VoIP application, analog voice signals such as
telephone calls and faxes are converted to digital packets and then
transmitted over the network. VoIP applications use speech
compression algorithms to reduce the bandwidth requirements. G.729
codec is a popular speech compression algorithm based on Code-
Excited Linear Prediction [7] compression. In G.729 the voice is coded
into 8-kbps streams. The coder/decoder work on 10ms frames and can
have up to 15ms delays. The G.729 codec is standardized by
International Telecommunication Union (ITU-T)[8] and has several
variations. The G.729 Annex A (G.729a) is a more popular version
that is compatible with G.729 but has a lower computational
complexity with lower but still acceptable quality. The ITU provides C
code of the reference implementation of the G.729a. Our goal is to
start from this C code and explore different options to achieve the best

design. We user the No-Instruction-Set-Computer (NISC) Technology
toolset [9] because the same toolset can be used for both ASIP design
as well as custom design generation similar to HLS. Currently, no
other one toolset provides both ASIP and HLS approach. Also,
typically these tools require significant changes in the C code which
would require significant time and cancels out the productivity gains
of using a C-based design flow. Using NISC toolset, we implemented
the algorithm using (1) a general purpose processor, (2) an
automatically generated custom datapath using general operations
(HLS), (3) a general purpose processor extended with a custom
functional unit (ASIP), and (4) an automatically generated datapath
using general operations as well as a custom functional unit
(ASIP+HLS). Depending on the area and performance requirements
one can choose any of the designs. The highest performance was
achieved when we combined both ASIP and HLS to generate a fully
customized architecture for each of the applications. The final design
could run at 11 MHz for the decoder and 30 MHz for the coder while
meeting the timing requirements of the standard.

The rest of this paper is organized as follows: Section 2 explains the
NISC design flow that we used in our experiments. Section 3 describes
how several different designs were generated for the G.729a speech
compression algorithm and Section 4 summarizes the problems we
faced in the overall flow that can be improved in future. Finally,
Section 5 concludes the paper.

2. NISC Design Flow
In NISC design approach, the target architecture is a variation of

microcoded architectures [10][11] and is composed of a datapath and a
controller. The datapath of NISC can be simple or as complex as
datapath of a processor. The controller drives the control signals of the
datapath components in each clock cycle. These control values are
generated by the NISC cycle-accurate compiler [12]. These values are
either stored in a memory or generated via logic in the controller. Both
the controller and the datapath can be pipelined. Figure 1 shows a
sample NISC architecture with a pipelined datapath that has partial
data forwarding, multi-cycle and pipelined units, as well as data
memory and register file.

Figure 1. NISC architecture example

Figure 2 shows the design flow for designing a custom NISC for a
given application. In NISC, the controller is generated after compiling
the application on a given datapath. Therefore both the application and
the datapath description are considered input to the NISC cycle-
accurate compiler. The datapath can be directly described or
automatically generated based on the application behavior. The
datapath is captured in the GNR (Generic Netlist Representation)
format [13] which describes the datapath as a netlist of components
and assigns different attributes to each component. A component in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2008, June 8-13, 2008, Anaheim, California, USA.
Copyright 2008 ACM 978-1-60558-115-6/08/0006…$5.00

datapath can be a register, register-file, bus, multiplexer, functional
unit, memory etc. The functionalities of components are associated
with timing information of corresponding control values.

The GNR description of the datapath and the C code of the
application are then given as input to the NISC compiler. The NISC
compiler maps the application directly on the given datapath and
generates a Finite State Machine (FSM) that determines the behavior
of datapath in each clock cycle. Finally, the complier generates the
contents of data memory (if any) and also uses the FSM to generate
the stream of control values. After applying several controller/FSM
optimizations [14], the RTL generator, first synthesizes a controller
from the output of compiler, and then uses the datapath information to
generate the final synthesizable RTL design (described in Verilog).
This RTL is then used for simulation (validation) and synthesis
(implementation). After synthesis and Placement and Routing (PAR),
the accurate timing, power, and area information can be extracted form
the layout and used for further datapath refinement. For example, the
user may add functional units and pipeline registers, or change the bit-
width of the components and observe the effect of modifications on
precision of the computation, number of cycles, clock period, power,
and area. The NISC toolset also includes an automatic datapath
generator/refiner [15]. In NISC, there is no need to design the
instruction-set because the compiler automatically analyzes the
datapath and extracts possible operations and branch delay. Therefore,
the designer can refine the design very fast.

Application

IDE

Code
Refinement

Datapath

GUI

Datapath
Refinement

Datapath Generator
(C à GNR)

Synthesis Backend

NISC Compiler
(C+GNR à FSM)

RTL Generator
(GNR+FSM à RTL)

RTL

Component/
Template
Library

Figure 2. NISC design flow

Similar to NISC, macrocode architecture has also been the target of
other design approaches such PICO [16][17], ARM OptimoDE
[18][19], MIMOLA [20], and TIPI [21]. However, in these
approaches, either the architecture is fixed and cannot be customized,
or a complete toolset is not available.

3. Design of G729 for VoIP
3.1 Preparing the source code

We downloaded the C code of the reference implementation from
ITU website [8]. The code contains two separate projects for the coder
and the decoder of the G.729a. Excluding comments and blank lines,
the coder contains about 7000 lines of code and the decoder contains
about 5500 lines of C code. Parts of the code are shared between the
coder and decoder. This reference code was written for execution on a
desktop PC. In the code, it was assumed that the input is read from a
file and the output is finally written to another file. Also, in several
parts of the code, the status of the application was printed on the
console (using printf function). Clearly, this kind of IO is not
efficient or even possible in an embedded implementation. So, the first
step of the preparation of the code was to remove all references to all
functions of the C standard IO library (i.e. stdio.h). These are the

only changes needed in the C code since NISC toolset supports full
ANSI C syntax. For reading the input of coder/decoder and writing the
output, we assumed a structure as shown in Figure 3.

Sampler Input
queue

G.729a
coder

G.729a
decoder

Output
queue sender

receiver Input
queue

Output
queue Player

network

Figure 3. Block diagram of VoIP application

We updated the main function of the coder and the decoder to
read from the input queue and write the data to the output queue.
Figure 4 shows the updated C code. The NISC toolset uses a feature
called pre-binding which assigns a C function to the low-level
operations implemented in hardware [22]. These functions are
described in the GNR description of the components. For example, a
queue component implements push(), pop(), and size()
functions for adding values to the queue, removing values from it, or
reading the number of available values in the queue, respectively.
The queue implementation is captured in GNR. GNR supports both
RTL and external IP (e.g. dedicated components in FPGA)
implementation for any component. When we add a queue to the
datapath, the NISC compiler extract the pre-bound functions based
on the instance name of the queue. For example, for queue
input_queue, pre-bound functions __$input_queue_push(),
__$input_queue_pop(), __$input_queue_size() can be used
in the C code to directly access the functionalities of the queue. The
C code in Figure 4 first waits for the previous phase (sampler for
coder and receiver for decoder in Figure 3) to insert all values of the
frame in the input queue. After processing the frame, it first makes
sure that the next phase (sender for coder and player for decoder in
Figure 3) has already consumed the previous frame and then write
the processed results of the current frame. In this way, all blocks of
Figure 3 can work in parallel in a pipelined fashion.
void main() {
 extern Word16 *input; //Pointer to input
 extern Word16 *output; //Pointer to output
 //...
 while(1) {
 while(__$input_queue_size() < FRAME_SIZE);
 for(i=0; i<FRAME_SIZE; ++i)
 input[i] = __$input_queue_pop();
 process_frame(); //encode or decode the frame
 while(__$output_queue_size() != 0);
 for(i=0; i<FRAME_SIZE; ++i)
 __$output_queue_push(output[i]);
 }
}

Figure 4. Main body of the coder/decoder

3.2 The target architecture
An important and useful feature of the NISC design flow (Figure

2) is that we can manually describe the datapath and have the toolset
to behave as an ASIP tool, or we can let the toolset automatically
generate the datapath and hence act as an HLS tool. In this way, we
did not need to learn two sets of tools and prepare two different
versions of the C code once for an ASIP tool and once for an HLS
tool. In other words, we can easily explore a full range of general
purpose to fully customized architectures with NISC toolset. In this
section, we demonstrate this capability.

We started from a general-purpose architecture shown in Figure 5.
We first described the datapath of this architecture in GNR and then
used the NISC toolset to compile the application on this architecture
and generate the RTL. We synthesized this RTL on a Xilinx Virtex4
(90-nm) FPGA package. The second rows of Table 1 and Table 2
show the result for coder and decoder, respectively. In these tables, the
second columns show the number cycles it takes to process one frame.

The third columns show the achieved frequency after synthesis and the
fourth columns show the minimum required frequency for processing
the frame in less than 15ms (required by standard). The fifth columns
show the size of microcode and the sixth columns show the size of
data memory. Finally, the last two columns show the number of FPGA
slices and RAM blocks used in each design. From these tables, it is
clear that, with the general purpose datapath of Figure 5, we can meet
the deadline for G.729a decoder, but not for the G.729a coder.

In the next step, we use the NISC toolset as an HLS tool and
generate a custom datapath for each of the G.729a coder and the
G.729a decoder. For each application, the toolset iterates several times
(according to the flow of Figure 2) to generate a custom datapath and
refine it until a good performance improvement and resource
utilization is achieved. In each iteration, the tools explore different
datapath netlists by changing number of functional units of each type
and their interconnects [15]. The third rows of Table 1 and Table 2
show the custom datapath (CDP) generation results for coder and
decoder, respectively. Note that after this customization step, the
number of cycles per frame, and the microcode size of both
applications are reduced and the area (number of slices) is increased.
However, still after this customization, the design of the coder cannot
meet the timing requirements.

Figure 5. General purpose datapath (GDP)

It may be possible to further improve the performance by breaking
the application into several parallel blocks and then use the HLS mode
of the NISC toolset for each block. However, as we mentioned before,
the reference code is written assuming a sequential execution on a
desktop PC. Therefore, partitioning the code into parallel blocks
requires significant code modifications. Our goal was to see if we can
meet the design constraints with minimum amount of code
modifications. Therefore, instead of partitioning the code, we tried an
ASIP approach and evaluated the improvements.

 To use an ASIP approach we need to find proper parts of the code
that can improve the overall application performance if we run those
parts on a custom functional unit. We profiled the execution of the
application on GDP and realized that in both coder and decoder,
almost half of the execution time was spent in only two functions, i.e.
L_mac() and L_msu(). These two functions in turn call L_mult(),
L_add(), and L_sub(). The latter three functions perform a saturated
version of the multiply, add, and subtract operations on 16-bit integers.
These functions are also used in other parts of the code as well. We
noticed that implementing the latter three functions in hardware is a lot
easier and more efficient than directly implementing L_mac() and
L_msu()functions in hardware. Implementing L_mac() and
L_msu()functions in hardware can also significantly increase the
critical path delay and hence reduce the maximum possible clock
frequency for the design. Additionally, implementing the three
saturated operations in hardware can improve the performance of other
parts of the code as well. We decided to add a custom functional unit
that performs the three saturated operations L_mult, L_add, and
L_sub. Before moving these functions to hardware, we have to make

sure their global side effects (if any) are properly handled. In the
reference code, global variable Overflow was accessed or updated in
many places including the above functions. Since these functions also
need to access the overflow flag, our custom functional unit also
contains a register that is updated / accessed by its own operations, or
can be updated/accessed directly in the program. Figure 6 shows the
block diagram of general datapath of Figure 5 which now has an extra
custom functional unit, i.e. cfu. After analyzing the GNR description
of Figure 6, the NISC toolset generates five pre-bound functions that
can be used in the C code to directly access the custom functional
units. These functions include: __$cfu_L_mult(),
_$cfu_L_add(), __$cfu_L_sub(), __$cfu_getOverflow(),
__$cfu_setOverflow(). These functions are in fact equivalent to
custom instructions in an ASIP approach. To use the new custom
functional unit, we need to replace all calls to L_mult(), L_add(),
and L_sub() in the code with __$cfu_L_mult(),
__$cfu_L_add(),and __$cfu_L_sub() pre-bound functions. Also,
we must replace all reads from Overflow variable with
__$cfu_getOverflow(), and all writes to Overflow variable with
__$cfu_setOverflow(). These changes were relatively straight
forward and we used C macros to minimize the necessary changes in
the code.

Figure 6. General purpose datapath + custom function unit (GDP+CFU)

The fourth rows of Table 1 and Table 2 shows the results of
running the modified coder/decoder on the GDP+CFU (Figure 6). In
this case, the required clock frequency for processing one frame under
15ms is much lower. Also, compared to the general purpose datapath
(GDP), adding the custom functional unit to GDP+CFU reduces the
microcode size and increases the area; which is expected in a typical
ASIP approach.

Table 1. Results for G.729a coder

Arch #cycles /
frame

Freq
(MHz)

Min Req.
Freq (MHz)

µcode
size(KB)

DMem
size (KB) #slices #RAM

Blocks
GDP 2664928 126 178 82 7.5 1619 48
CDP 1935112 119 129 74 7.5 2016 47
GDP+CFU 642848 112 43 75 7.5 1760 45
CDP+CFU 452886 91 30 70 7.5 2418 44

Table 2. Results for G.729a decoder

Arch #cycles /
frame

Freq
(MHz)

Min Req.
Freq (MHz)

µcode
size(KB)

DMem
size (KB) #slices #RAM

Blocks
GDP 571780 126 38 33 7.2 1092 27
CDP 413835 111 28 31 7.2 1588 27
GDP+CFU 289150 112 19 31 7.2 1200 26
CDP+CFU 166625 87 11 31 7.2 1950 26

To maximize the improvements, we combined the ASIP and HLS

modes of the NISC toolset. We added our custom functional unit to the
list of available resources and ran the tools to generate a custom
datapath for each of the coder and decoder applications. In this step,
we used the version of coder and the decoder that contained the pre-
bound functions for using the custom functional unit. The last rows of
Table 1 and Table 2 show the results of generating custom datapath

with custom functional unit (CDP+CFU). The performance is further
improved and the required clock frequency is further decreased. Also,
the microcode size is further decreased while the area is increased. The
final design of the coder runs 4.2 times faster than the general purpose
and the decoder runs 2.4 times faster when all run at their highest
possible clock frequencies.

Depending on the actual application of the G.729a codec, one can
choose any of the above designs. Also, we can run each design with
the minimum required frequency and save power; or run them at them
maximum possible frequency to process more speech frames.

4. Lessons learned
It is evident that using a C-based design flow can significantly

reduce the design time while achieving the desired results. However,
the success of the project, the quality of the final results, and the
benefits of a c-based design flow depend directly on (i) the quality of
the input C code, (ii) quality of high-level C to RTL tool, and (iii)
proper integration of the C to RTL tool with the backend synthesis
tools.

To further increase the impact and benefits of C-based design
flows, the software developer and providers of reference code for
standards need to consider, almost from the beginning, that their
code is not targeted only for execution on a general purpose
processor and it can be used to directly generate RTL. Many
researchers (e.g. [23]) have studied the effect of coding styles on the
quality of synthesis from C. Availability of more synthesis friendly
ANSI C/C++ code can significantly increase the acceptance of C-
based design flows among designers.

On the other hand, C to RTL tool developers must also consider
that supporting a bigger subset of standard C/C++ and avoiding
proprietary extensions is crucial for success of C-based design. One
of the major premises of using a C-based design is improved
productivity. The productivity benefits can be reduced or even
negated if significant code modifications in the applications are
needed before a C to RTL tool can be used. We believe it is almost
equally important to develop code refinement tools that are targeted
to C to RTL design flow. These tools can further automate the
tedious and error prone code modifications. General code refactoring
tools [24][25] usually are helpful but may not directly target the
specific needs of C-based hardware design flows. Although some
researchers [26][27] have started looking at such issues, the design
community can benefit from more similar research and eventually
commercial products.

Today, almost all C-based design tools are offered separately
from the backend synthesis tools (RTL synthesis, logic synthesis,
physical synthesis, etc.). Many optimizations and customizations in
high-level tools require feedback from the lower-level tools. Despite
the apparent business incentives in controlling the market, the
backend tool providers can themselves enjoy a much larger market if
they consider and provide facilities for tighter integration of other
third party tools in their flow. In the long run, initiatives such as SI2
[28] can facilitate this integration. But until then, the backend tool
vendors can significantly improve the situation by for example
maintaining a consistent (and backward compatible) report
generation scheme. For example we noticed that Xilinx ISE reports
the number of RAM blocks as “Number of FIFO16/RAMB16s” for
Virtex4 and “Number of RAM/FIFO” for Virtex5. Such simple
changes in the reports of the backend tool can break the high-level
tools that depend on them.

5. Conclusion
In this paper we studied the design of a G.729a speech compression

codec from a reference C code implementation. We showed that it is
possible to achieve efficient designs and meet the standard
requirements with very little code modifications and automatic RTL
generation using NISC toolset. We analyzed the results of using four

approaches for implementing the algorithm. Namely, we tried using
(1) a general purpose processor, (2) using HLS alone, (3) using ASIP
alone, and (4) combining ASIP and HLS. The latter gave us the best
results.

6. References
[1] M.K. Jain, M. Balakrishnan, A. Kumar, “ASIP Design Methodologies: Survey

and Issues”, In Proceedings of the Fourteenth International Conference on
VLSI Design, 2001.

[2] D. Gajski, N. Dutt, A. Wu, S. Lin, “High-Level Synthesis Introduction to Chip
and System Design”, Kluwer Academic Publishers, The Netherlands, 1994.

[3] Tensilica Inc. http://www.tenisilica.com
[4] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, A.Wieferink, H.

Meyr, “A Novel Methodology for the Design of Application Specific
Instruction Set Processors (ASIP) Using a Machine Description Language”,
IEEE Transactions on Computer-Aided Design, 20(11):1338–1354, 2001.

[5] O. Schliebusch, A. Chattopadhyay, R. Leupers, G. Ascheid, H. Meyr, M.
Steinert, G. Braun, A. Nohl, “RTL Processor Synthesis for Architecture
Exploration and Implementation”, DATE, 2004.

[6] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, A. Nicolau,
“EXPRESSION: A language for architecture exploration through
compiler/simulator retargetability”, DATE, pages 485-490, 1999.

[7] M. Schroeder and B. Atal, “Code-excited linear prediction (celp): High-quality
speech at very low bit rates”, in Proceedings IEEE International Conference
on Acoustics, Speech and Signal Processing, 1984.

[8] ITU-T Website: http://www.itu.int/
[9] NISC Technology website http://www.cecs.uci.edu/~nisc/.
[10] A. Agrawala, T. Rauscher, Foundations of Microprogramming: “Architecture,

Software, and Applications”, Academic Press, 1976.
[11] S. Habib, “Microprogramming and Firmware Engineering Methods”, John

Wiley & Sons, Inc., 1988.
[12] M. Reshadi, D. Gajski, “A Cycle-Accurate Compilation Algorithm for Custom

Pipelined Datapaths”, CODES+ISSS, 2005.
[13] B. Gorjiara, M. Reshadi, D. Gajski, “Generic Architecture Description for

Retargetable Compilation and Synthesis of Application-Specific Pipelined
IPs”, in International Conference on Computer Design (ICCD), 2006.

[14] B. Gorjiara, D. Gajski, “FPGA-friendly Code Compression Technique for
Statically Scheduled Horizontal Microcoded Custom Ips”, International
Symposium on Field-Programmable Gate Arrays (FPGA), 2007.

[15] B. Gorjiara, D. Gajski, “Automatic Architecture Refinement Techniques for
Customizing Processing Elements”, DAC, 2008.

[16] M. Sivaraman, S. Aditya, “Cycle-time aware architecture synthesis of custom
hardware accelerators”, in International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES), 2002.

[17] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cronquist and M.
Sivaraman, “PICO-NPA: High-Level Synthesis of Nonprogrammable
Hardware Accelerators”, in Journal of VLSI Signal Processing, 31(2), 2002.

[18] N. Clark, H. Zhong, K. Fan, S. Mahlke, K. Flautner, K. Van Nieuwenhove,
“OptimoDE: Programmable Accelerator Engines Through Retargetable
Customization”, Hot Chips, 2004.

[19] M. Byatt, “Data plane processing with configurable architectures”, ARM white
paper, 2003.

[20] S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Neumann, D.
Voggenauer, “The MIMOLA Language - Version 4.1. Technical Report.”
Computer Science Dpt., University of Dortmund, Sept. 1994.

[21] S. Weber and K. Keutzer, “Using Minimal Minterms to Represent
Programmability”, CODES+ISSS, 2005.

[22] M. Reshadi, D. Gajski, “Interrupt and Low-level Programming Support for
Expanding the Application Domain of Statically-Scheduled Horizontal-
Microcoded Architectures in Embedded Systems”, DATE, 2007.

[23] G. Stitt, F. Vahid, W. Najjar, “A Code Refinement Methodology for
Performance-Improved Synthesis from C”, IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2006.

[24] M. Fowler, “Refactoring: Improving the design of existing code”, in
Proceedings of the Second XP Universe and First Agile Universe Conference
on Extreme Programming and Agile Methods, Springer-Verlag, 2002.

[25] Refactoring catalog, http://www.refactoring.com/catalog/
[26] Pramod Chandraiah, Rainer Dömer, “Pointer Re-coding for Creating

Definitive MPSoC Models”, CODES+ISSS, 2007.
[27] Sumit Gupta, R.K. Gupta, N.D. Dutt, A. Nicolau, “SPARK: A Parallelizing

Approach to the High-Level Synthesis of Digital Circuits”, Kluwer Academic
Publishers, 2004.

[28] Silicon Integration Initiative website: http://www.si2.org/

