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Abstract 
In this paper we present the design of a G.729a codec in a C-

based design flow. The codec is used in VoIP applications for 
sending speech over internet protocol. We started from the standard 
reference C implementation and generated several customized 
designs using the NISCT C-to-RTL toolset. Our final designs could 
run at very low clock frequencies (11 MHz for the decoder and 30 
MHz for the coder) while meeting the timing requirements of the 
standard. We present these designs and the corresponding C-based 
design flow in this paper.  
Categories and Subject Descriptors 
C.3 [Computer Systems Organization]: Special-Purpose and Application-Based Systems 
C.4 [Computer Systems Organization]: Performance of Systems - Design studies 
General Terms 
Design, Algorithms 
Keywords 
NISC, HLS, ASIP, VoIP, G729A, C-to-RTL, C-based design flow 

1. Introduction 
Algorithm-level synthesis and C-based design flow enable design at 

higher-level of abstraction resulting in higher productivity and shorter 
design times. Typically a C-description can be turned into RTL 
implementation using either Application Specific Instruction-set 
Processors (ASIP)[1] or High-Level-Synthesis (HLS)[2]. In ASIP, 
such as Tensilica [3], LISA [4][5], and EXPRESSION [6]; a base 
processor is extended by adding custom instructions that can improve 
the performance of a specific application. Such approaches usually 
support the complete C grammar and are useful for large applications. 
On the other hand, in HLS, the C-description is directly translated to a 
micro-architecture (datapath and controller) that executes only the 
given application. Such approaches usually support a sub-set of the C 
grammar and are useful for small applications. Many variations of 
ASIP and HLS have been studied by researchers or offered as 
commercial products.  

In this paper, we show the results of designing a complete G.729 
algorithm which is used in Voice over Internet Protocol (VoIP) 
applications. In a VoIP application, analog voice signals such as 
telephone calls and faxes are converted to digital packets and then 
transmitted over the network. VoIP applications use speech 
compression algorithms to reduce the bandwidth requirements. G.729 
codec is a popular speech compression algorithm based on Code-
Excited Linear Prediction [7] compression. In G.729 the voice is coded 
into 8-kbps streams. The coder/decoder work on 10ms frames and can 
have up to 15ms delays. The G.729 codec is standardized by 
International Telecommunication Union (ITU-T)[8] and has several 
variations. The G.729 Annex A (G.729a) is a more popular version 
that is compatible with G.729 but has a lower computational 
complexity with lower but still acceptable quality. The ITU provides C 
code of the reference implementation of the G.729a. Our goal is to 
start from this C code and explore different options to achieve the best 

design. We user the No-Instruction-Set-Computer (NISC) Technology 
toolset [9] because the same toolset can be used for both ASIP design 
as well as custom design generation similar to HLS. Currently, no 
other one toolset provides both ASIP and HLS approach. Also, 
typically these tools require significant changes in the C code which 
would require significant time and cancels out the productivity gains 
of using a C-based design flow. Using NISC toolset, we implemented 
the algorithm using (1) a general purpose processor, (2) an 
automatically generated custom datapath using general operations 
(HLS), (3) a general purpose processor extended with a custom 
functional unit (ASIP), and (4) an automatically generated datapath 
using general operations as well as a custom functional unit 
(ASIP+HLS). Depending on the area and performance requirements 
one can choose any of the designs. The highest performance was 
achieved when we combined both ASIP and HLS to generate a fully 
customized architecture for each of the applications. The final design 
could run at 11 MHz for the decoder and 30 MHz for the coder while 
meeting the timing requirements of the standard. 

The rest of this paper is organized as follows: Section 2 explains the 
NISC design flow that we used in our experiments. Section 3 describes 
how several different designs were generated for the G.729a speech 
compression algorithm and Section 4 summarizes the problems we 
faced in the overall flow that can be improved in future. Finally, 
Section 5 concludes the paper. 

2. NISC Design Flow 
In NISC design approach, the target architecture is a variation of 

microcoded architectures [10][11] and is composed of a datapath and a 
controller. The datapath of NISC can be simple or as complex as 
datapath of a processor. The controller drives the control signals of the 
datapath components in each clock cycle. These control values are 
generated by the NISC cycle-accurate compiler [12]. These values are 
either stored in a memory or generated via logic in the controller. Both 
the controller and the datapath can be pipelined. Figure 1 shows a 
sample NISC architecture with a pipelined datapath that has partial 
data forwarding, multi-cycle and pipelined units, as well as data 
memory and register file. 

 
Figure 1. NISC architecture example 

Figure 2 shows the design flow for designing a custom NISC for a 
given application. In NISC, the controller is generated after compiling 
the application on a given datapath. Therefore both the application and 
the datapath description are considered input to the NISC cycle-
accurate compiler. The datapath can be directly described or 
automatically generated based on the application behavior. The 
datapath is captured in the GNR (Generic Netlist Representation) 
format [13] which describes the datapath as a netlist of components 
and assigns different attributes to each component. A component in 
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datapath can be a register, register-file, bus, multiplexer, functional 
unit, memory etc. The functionalities of components are associated 
with timing information of corresponding control values. 

The GNR description of the datapath and the C code of the 
application are then given as input to the NISC compiler. The NISC 
compiler maps the application directly on the given datapath and 
generates a Finite State Machine (FSM) that determines the behavior 
of datapath in each clock cycle. Finally, the complier generates the 
contents of data memory (if any) and also uses the FSM to generate 
the stream of control values. After applying several controller/FSM 
optimizations [14], the RTL generator, first synthesizes a controller 
from the output of compiler, and then uses the datapath information to 
generate the final synthesizable RTL design (described in Verilog). 
This RTL is then used for simulation (validation) and synthesis 
(implementation). After synthesis and Placement and Routing (PAR), 
the accurate timing, power, and area information can be extracted form 
the layout and used for further datapath refinement. For example, the 
user may add functional units and pipeline registers, or change the bit-
width of the components and observe the effect of modifications on 
precision of the computation, number of cycles, clock period, power, 
and area. The NISC toolset also includes an automatic datapath 
generator/refiner [15]. In NISC, there is no need to design the 
instruction-set because the compiler automatically analyzes the 
datapath and extracts possible operations and branch delay. Therefore, 
the designer can refine the design very fast. 
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Figure 2. NISC design flow 

Similar to NISC, macrocode architecture has also been the target of 
other design approaches such PICO [16][17], ARM OptimoDE 
[18][19], MIMOLA [20], and TIPI [21]. However, in these 
approaches, either the architecture is fixed and cannot be customized, 
or a complete toolset is not available.  

3.  Design of G729 for VoIP 
3.1 Preparing the source code 

We downloaded the C code of the reference implementation from 
ITU website [8]. The code contains two separate projects for the coder 
and the decoder of the G.729a. Excluding comments and blank lines, 
the coder contains about 7000 lines of code and the decoder contains 
about 5500 lines of C code. Parts of the code are shared between the 
coder and decoder. This reference code was written for execution on a 
desktop PC. In the code, it was assumed that the input is read from a 
file and the output is finally written to another file. Also, in several 
parts of the code, the status of the application was printed on the 
console (using printf function). Clearly, this kind of IO is not 
efficient or even possible in an embedded implementation. So, the first 
step of the preparation of the code was to remove all references to all 
functions of the C standard IO library (i.e. stdio.h). These are the 

only changes needed in the C code since NISC toolset supports full 
ANSI C syntax. For reading the input of coder/decoder and writing the 
output, we assumed a structure as shown in Figure 3. 
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Figure 3. Block diagram of VoIP application 

We updated the main function of the coder and the decoder to 
read from the input queue and write the data to the output queue. 
Figure 4 shows the updated C code. The NISC toolset uses a feature 
called pre-binding which assigns a C function to the low-level 
operations implemented in hardware [22]. These functions are 
described in the GNR description of the components. For example, a 
queue component implements push(), pop(), and size() 
functions for adding values to the queue, removing values from it, or 
reading the number of available values in the queue, respectively. 
The queue implementation is captured in GNR. GNR supports both 
RTL and external IP (e.g. dedicated components in FPGA) 
implementation for any component. When we add a queue to the 
datapath, the NISC compiler extract the pre-bound functions based 
on the instance name of the queue. For example, for queue 
input_queue, pre-bound functions __$input_queue_push(), 
__$input_queue_pop(), __$input_queue_size() can be used 
in the C code to directly access the functionalities of the queue. The 
C code in Figure 4 first waits for the previous phase (sampler for 
coder and receiver for decoder in Figure 3) to insert all values of the 
frame in the input queue. After processing the frame, it first makes 
sure that the next phase (sender for coder and player for decoder in 
Figure 3) has already consumed the previous frame and then write 
the processed results of the current frame. In this way, all blocks of 
Figure 3 can work in parallel in a pipelined fashion.  
void main() { 
 extern Word16 *input; //Pointer to input 
 extern Word16 *output; //Pointer to output 
 //... 
 while(1) { 
  while(__$input_queue_size() < FRAME_SIZE); 
  for(i=0; i<FRAME_SIZE; ++i) 
   input[i] = __$input_queue_pop(); 
  process_frame(); //encode or decode the frame 
  while(__$output_queue_size() != 0); 
  for(i=0; i<FRAME_SIZE; ++i) 
   __$output_queue_push(output[i]); 
 } 
}  

Figure 4. Main body of the coder/decoder 

3.2 The target architecture 
An important and useful feature of the NISC design flow (Figure 

2) is that we can manually describe the datapath and have the toolset 
to behave as an ASIP tool, or we can let the toolset automatically 
generate the datapath and hence act as an HLS tool. In this way, we 
did not need to learn two sets of tools and prepare two different 
versions of the C code once for an ASIP tool and once for an HLS 
tool. In other words, we can easily explore a full range of general 
purpose to fully customized architectures with NISC toolset. In this 
section, we demonstrate this capability. 

We started from a general-purpose architecture shown in Figure 5. 
We first described the datapath of this architecture in GNR and then 
used the NISC toolset to compile the application on this architecture 
and generate the RTL. We synthesized this RTL on a Xilinx Virtex4 
(90-nm) FPGA package. The second rows of Table 1 and Table 2 
show the result for coder and decoder, respectively. In these tables, the 
second columns show the number cycles it takes to process one frame. 



 

The third columns show the achieved frequency after synthesis and the 
fourth columns show the minimum required frequency for processing 
the frame in less than 15ms (required by standard). The fifth columns 
show the size of microcode and the sixth columns show the size of 
data memory. Finally, the last two columns show the number of FPGA 
slices and RAM blocks used in each design. From these tables, it is 
clear that, with the general purpose datapath of Figure 5, we can meet 
the deadline for G.729a decoder, but not for the G.729a coder. 

In the next step, we use the NISC toolset as an HLS tool and 
generate a custom datapath for each of the G.729a coder and the 
G.729a decoder. For each application, the toolset iterates several times 
(according to the flow of Figure 2) to generate a custom datapath and 
refine it until a good performance improvement and resource 
utilization is achieved. In each iteration, the tools explore different 
datapath netlists by changing number of functional units of each type 
and their interconnects [15]. The third rows of Table 1 and Table 2 
show the custom datapath (CDP) generation results for coder and 
decoder, respectively. Note that after this customization step, the 
number of cycles per frame, and the microcode size of both 
applications are reduced and the area (number of slices) is increased. 
However, still after this customization, the design of the coder cannot 
meet the timing requirements.  

 
Figure 5. General purpose datapath (GDP) 

It may be possible to further improve the performance by breaking 
the application into several parallel blocks and then use the HLS mode 
of the NISC toolset for each block. However, as we mentioned before, 
the reference code is written assuming a sequential execution on a 
desktop PC. Therefore, partitioning the code into parallel blocks 
requires significant code modifications. Our goal was to see if we can 
meet the design constraints with minimum amount of code 
modifications. Therefore, instead of partitioning the code, we tried an 
ASIP approach and evaluated the improvements. 

 To use an ASIP approach we need to find proper parts of the code 
that can improve the overall application performance if we run those 
parts on a custom functional unit. We profiled the execution of the 
application on GDP and realized that in both coder and decoder, 
almost half of the execution time was spent in only two functions, i.e. 
L_mac() and L_msu(). These two functions in turn call L_mult(), 
L_add(), and L_sub(). The latter three functions perform a saturated 
version of the multiply, add, and subtract operations on 16-bit integers. 
These functions are also used in other parts of the code as well. We 
noticed that implementing the latter three functions in hardware is a lot 
easier and more efficient than directly implementing L_mac() and 
L_msu()functions in hardware. Implementing L_mac() and 
L_msu()functions in hardware can also significantly increase the 
critical path delay and hence reduce the maximum possible clock 
frequency for the design. Additionally, implementing the three 
saturated operations in hardware can improve the performance of other 
parts of the code as well. We decided to add a custom functional unit 
that performs the three saturated operations L_mult, L_add, and 
L_sub. Before moving these functions to hardware, we have to make 

sure their global side effects (if any) are properly handled. In the 
reference code, global variable Overflow was accessed or updated in 
many places including the above functions. Since these functions also 
need to access the overflow flag, our custom functional unit also 
contains a register that is updated / accessed by its own operations, or 
can be updated/accessed directly in the program. Figure 6 shows the 
block diagram of general datapath of Figure 5 which now has an extra 
custom functional unit, i.e. cfu. After analyzing the GNR description 
of Figure 6, the NISC toolset generates five pre-bound functions that 
can be used in the C code to directly access the custom functional 
units. These functions include: __$cfu_L_mult(), 
_$cfu_L_add(), __$cfu_L_sub(), __$cfu_getOverflow(),  
__$cfu_setOverflow(). These functions are in fact equivalent to 
custom instructions in an ASIP approach. To use the new custom 
functional unit, we need to replace all calls to L_mult(), L_add(), 
and L_sub() in the code with __$cfu_L_mult(), 
__$cfu_L_add(),and __$cfu_L_sub() pre-bound functions. Also, 
we must replace all reads from Overflow variable with 
__$cfu_getOverflow(), and all writes to Overflow variable with 
__$cfu_setOverflow(). These changes were relatively straight 
forward and we used C macros to minimize the necessary changes in 
the code.  

 
Figure 6. General purpose datapath + custom function unit (GDP+CFU) 

The fourth rows of Table 1 and Table 2 shows the results of 
running the modified coder/decoder on the GDP+CFU (Figure 6). In 
this case, the required clock frequency for processing one frame under 
15ms is much lower. Also, compared to the general purpose datapath 
(GDP), adding the custom functional unit to GDP+CFU reduces the 
microcode size and increases the area; which is expected in a typical 
ASIP approach. 

Table 1. Results for G.729a coder 

Arch #cycles / 
frame 

Freq 
(MHz) 

Min Req. 
Freq (MHz) 

µcode 
size(KB) 

DMem 
size (KB) #slices #RAM 

Blocks 
GDP 2664928 126 178 82 7.5 1619 48 
CDP 1935112 119 129 74 7.5 2016 47 
GDP+CFU 642848 112 43 75 7.5 1760 45 
CDP+CFU 452886 91 30 70 7.5 2418 44 

  
Table 2. Results for G.729a decoder 

Arch #cycles / 
frame 

Freq 
(MHz) 

Min Req. 
Freq (MHz) 

µcode 
size(KB) 

DMem 
size (KB) #slices #RAM 

Blocks 
GDP 571780 126 38 33 7.2 1092 27 
CDP 413835 111 28 31 7.2 1588 27 
GDP+CFU 289150 112 19 31 7.2 1200 26 
CDP+CFU 166625 87 11 31 7.2 1950 26 

  
To maximize the improvements, we combined the ASIP and HLS 

modes of the NISC toolset. We added our custom functional unit to the 
list of available resources and ran the tools to generate a custom 
datapath for each of the coder and decoder applications. In this step, 
we used the version of coder and the decoder that contained the pre-
bound functions for using the custom functional unit. The last rows of 
Table 1 and Table 2 show the results of generating custom datapath 



 

with custom functional unit (CDP+CFU). The performance is further 
improved and the required clock frequency is further decreased. Also, 
the microcode size is further decreased while the area is increased. The 
final design of the coder runs 4.2 times faster than the general purpose 
and the decoder runs 2.4 times faster when all run at their highest 
possible clock frequencies.   

Depending on the actual application of the G.729a codec, one can 
choose any of the above designs. Also, we can run each design with 
the minimum required frequency and save power; or run them at them 
maximum possible frequency to process more speech frames.  

4. Lessons learned 
It is evident that using a C-based design flow can significantly 

reduce the design time while achieving the desired results. However, 
the success of the project, the quality of the final results, and the 
benefits of a c-based design flow depend directly on (i) the quality of 
the input C code, (ii) quality of high-level C to RTL tool, and (iii) 
proper integration of the C to RTL tool with the backend synthesis 
tools.  

To further increase the impact and benefits of C-based design 
flows, the software developer and providers of reference code for 
standards need to consider, almost from the beginning, that their 
code is not targeted only for execution on a general purpose 
processor and it can be used to directly generate RTL. Many 
researchers (e.g. [23]) have studied the effect of coding styles on the 
quality of synthesis from C. Availability of more synthesis friendly 
ANSI C/C++ code can significantly increase the acceptance of C-
based design flows among designers. 

On the other hand, C to RTL tool developers must also consider 
that supporting a bigger subset of standard C/C++ and avoiding 
proprietary extensions is crucial for success of C-based design. One 
of the major premises of using a C-based design is improved 
productivity. The productivity benefits can be reduced or even 
negated if significant code modifications in the applications are 
needed before a C to RTL tool can be used. We believe it is almost 
equally important to develop code refinement tools that are targeted 
to C to RTL design flow. These tools can further automate the 
tedious and error prone code modifications. General code refactoring 
tools [24][25] usually are helpful but may not directly target the 
specific needs of C-based hardware design flows. Although some 
researchers [26][27] have started looking at such issues, the design 
community can benefit from more similar research and eventually 
commercial products. 

Today, almost all C-based design tools are offered separately 
from the backend synthesis tools (RTL synthesis, logic synthesis, 
physical synthesis, etc.). Many optimizations and customizations in 
high-level tools require feedback from the lower-level tools. Despite 
the apparent business incentives in controlling the market, the 
backend tool providers can themselves enjoy a much larger market if 
they consider and provide facilities for tighter integration of other 
third party tools in their flow. In the long run, initiatives such as SI2 
[28] can facilitate this integration. But until then, the backend tool 
vendors can significantly improve the situation by for example 
maintaining a consistent (and backward compatible) report 
generation scheme. For example we noticed that Xilinx ISE reports 
the number of RAM blocks as “Number of FIFO16/RAMB16s” for 
Virtex4 and “Number of RAM/FIFO” for Virtex5. Such simple 
changes in the reports of the backend tool can break the high-level 
tools that depend on them.  

5. Conclusion 
In this paper we studied the design of a G.729a speech compression 

codec from a reference C code implementation. We showed that it is 
possible to achieve efficient designs and meet the standard 
requirements with very little code modifications and automatic RTL 
generation using NISC toolset. We analyzed the results of using four 

approaches for implementing the algorithm. Namely, we tried using 
(1) a general purpose processor, (2) using HLS alone, (3) using ASIP 
alone, and (4) combining ASIP and HLS. The latter gave us the best 
results. 
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