
Portability and Security, All in CHIRE File System

Mohammad Hossein Reshadi, Bita Gorji-Ara, *Zainalabedin Navabi
Electrical and Computer Engineering Department

Faculty of Engineering / University of Tehran / Tehran, Iran
{reshadi, bita}@cad.ece.ut.ac.ir

*Northeastern University / Boston, MA 02115
Tel: 617-373-3034; Fax: 617-373-8970

navabi@ece.neu.edu

Abstract
Demand for faster, larger and more complex systems

requires that designers partition their large designs,
reuse available cores and cells and use advanced design
tools. This way, design parties must be able to exchange
their designs, vendors' intellectual property must be
protected and tool developers should be able to focus on
specific areas and integrate and combine other tools to
make up a complete product. All these depend on how
exchange of information takes place.

A good intermediate format can be a very good
connection point for all these requirements. While
technical properties of the intermediate format affect its
efficiency, portability and security affect its success as an
intermediate format. The former needs clear definition
and the latter needs open areas in the standard for
intuitions. CHIRE file system introduces a very modular
architecture that covers all aspects of these two
properties.

Key Words: intermediate format, VHDL, object

oriented, portability, security, intellectual property, core
and cell reuse.

1. Introduction

Facing the increasing need for more and more

complex systems and to win quality and time to market
competition, companies and designers demand faster and
better CAD tools. This requires design partitioning and
consequently converging designs that are done on
different platforms by different designers using different
tools. Combining design components into a complete
design requires people involved to communicate and
exchange data and results. The critical part of this
communication is a standard intermediate format in
which design data are represented. AIRE/CE [1], Error!
Reference source not found. was one such standard.

In [3] it is discussed that portability and security are
two very important properties of standard intermediate

files and that the requirements of these two issues are
contradictory. Portability means implementation and
platform independency while security means to control
the access to some parts of the design. To support the
former, the standard should clearly define every thing
about files and their structures and to support the latter,
there should be enough flexibility in the standard to
provide means of access control for the developers and
companies. On the other hand, different applications may
need different file formats and the standard should not
limit them to some specific formats.

By introducing CHIRE1, as a revision to AIRE/CE, we
have tried to solve almost all the discussed problems. A
VDHL compiler uses this data structure and compiles
language constructs into binary representations in the
memory. These data are then stored in files so that other
applications can use them. Here we will focus on
portability and a completely new file system that not only
considers portability requirements but also is very
flexible for security aspects. This file system has two
separate parts. One part is the general algorithm and
strategy of loading and saving the class contents using
fixed interfaces with some buffers. The second part is the
implementation of interfaces in the buffers. The standard
will define the algorithms and what each interface in the
FR (File Representation) classes is supposed to do.
Following the standard, new FR classes can support any
file format and any coding and decoding algorithm. The
implementation of FR classes is not a part of intermediate
format itself and hence they can be used as plug-ins
provided by companies and designers who sell or share
their components.

The requirements and the definition of the algorithm
provides portability and the open implementation keeps
security issues hidden and unlimited. XML, Binary and
Text are the three currently supported file formats that
their structure, advantages and disadvantages are
discussed.

1 - Compiled HDL Intermediate Representation with Extensibility

In Sections 2 and 3 portability and security issues are
discussed respectively and in Section 4 the contradictory

requirements are explained. In Section 5 the architecture
of CHIRE file system is shown and Section 6 explains

save and load algorithms. Section 7 briefly discusses the
implemented file formats in CHIRE. Finally Section 8
discusses some possible secure applications of this file
system.

2. Portability

A standard is supporting portability if files, generated

under that standard, are always usable irrespective of the
operating system and the machine by which the file is
produced. This requires the platform and implementation
independency features in the standard.

2.1. Platform Independency

Every machine has its own architecture and hence size

and structure of standard types, such as integer, may
differ on different machines. Although theorically good,
the solution of AIRE/CE for this independency is not
practically efficient because it adds a lot of overhead to
all files.

In CHIRE, a complete design is stored in different
files and every file points to a single text file known as
the basic data file. This file contains the information
about the structure of types that are used in the data files.
This way, there is only one basic data file for every
implementation of the standard on a machine and under
its operating system. A typical basic data file contains
the following information:

• Bit structure of integer and floating point numbers.
• The binary codes assigned to every KIND in the

implementation.
• Types used in CHIRE and their description. For

example the MRT_Boolean and codes assigned to
false and true.

• Byte lengths of character data to show whether
characters are Unicode or not.

Comparing the basic data file of the transferred files

with the original basic data file of the intermediate
format, the loader can decide what kinds of conversions
are necessary.

2.2. Implementation Independency

The standard specification of an intermediate format

should be such that files written by one implementation
(vendor) can be used by any other implementation. For

this, filing structure and addressing techniques should be
clearly defined.

2.2.1. Filing structure. The filing structure specifies
how a complete design is represented on hard disk, how
files are configured and how data are stored in a file.

AIRE/CE suggested a single file per design strategy,
which is extremely inefficient especially for large designs
that use many different libraries [3].

In CHIRE, every library is saved in a separate file in
which the names of primary and secondary units, their
relative path to the file and the list of source codes
compiled in the corresponding library are stored.

Every library unit is stored in a single file and the file
has three parts:

• The basic data file name.
• The file version. This version is increased on some

very special cases and can be used in detecting the
validity of files at load time.

• The objects of the corresponding library unit. All
objects accessible from a library init are considered its
objects. Every object is stored in a distinct area and
the mechanism is so that extensions can simply store
their information in the same area of an object.
File names of library unit files are generated
automatically to ease the process of loading and
saving. The file names are constructed by
concatenation of type descriptor and full name of the
library unit. The extension shows the file format.

2.2.2. Addressing techniques. When multiple files are
used to represent a complete design, addressing
techniques for referencing objects must be clearly
defined.

In CHIRE, there are two kinds of object referencing.
Local Object Referencing (LOR) points to other objects
in the same file, while Global Object Referencing (GOR)
points to objects in other files. FIR_ProxyRef and
FIR_ProxyIndicator of the proposed FIR definition in
AIRE/CE do not present a solution for GOR and are
inefficient for LOR [3].

LOR addressing is simply implemented using unique
IDs given to objects of a file. In a Library Unit, every
object that points to another object uses its ID to maintain
its connectivity. The saving mechanism promises the
uniqueness of IDs in a single file. Using IDs instead of
physical positions in the file is a necessity when
supporting different file formats is intended. The
sequence of IDs assigned to objects depends on the
implementation considerations, but since these IDs are
not used outside a file, it does not affect portability.

However, GOR is more complicated and is based on
the fact that unique names extracted from source code are

CHIRE
Classes

Object
Buffer

Object
Buffer

Object
Buffer

File
Buffer

Hard
Disk

OS

always uniquely extractable in any implementation by
just following an algorithm.

In GOR, objects in other files are addressed through a
version and a sequence of names. The version confirms
that the destination file is not compiled lately and that this
part of the design is still valid. The sequence of names is
needed to solve the problems of visibility and scope that
is not available (and is not needed to be) after
compilation. This very important property enables the
designs to be ported easily even if they have many
references to the standard packages. This sequence of
names is called an explicit name and is somehow
equivalent to the 'PATH attribute in the VHDL.

Using the explicit name, the loader can locate the
filename where the object is stored and find the object in
the located file.

3. Security

Portability is utilized well by designers and vendors

only if their intellectual property is protected properly. In
the other words, the standard should provide a means for
controlling the access to some particular parts of the
design. For example the standard should allow the
vendors to produce and purchase coded data files that are
decoded and loaded when specific conditions are
satisfied. Even it should be possible to partially decode
the file using any coding and decoding algorithm.

4. Contradictory goals

While portability is based on clarifying every thing

about structure of files, organization of data inside files
and load and save algorithms, security depends on hiding
some of such information from users.

CHIRE tries to cover both topics by defining a
standard and fixed mechanism and flow of data and
leaving the file formats unlimited and open to the users.
In this way a file can be used only if the proper file
handler is available and the small handler performs
reading and writing in any desired format.

5. Block diagram of CHIRE file system

As shown in Figure 5-1 the data transmission between

classes in the memory and files on the hard disk is done
through Object and File Buffers. In this design, every
object in the memory stores/retrieves its data to/from an
Object buffer by calling a fixed and standard interface.
The Object buffers in turn, send/receive data to/from a
File Buffer and finally, by calling operating system
routins, the File buffer interacts with physical file on the
hard disk using any coding and decoding algorithm and
in any desired format.

Figure 5-1- Levels of file access in CHIRE

5.1. Object Buffers

A single Object Buffer corresponds to a single object

in the memory and has at least three parameters: kind of
object, ID and explicit name of the object. All kinds of
Object Buffers have a method for saving and loading a
parameter whose name, value, size and extension name,
to which the parameter belongs, is known. The order of
calls to this method indicated the order in which fields of
an object are stored in a distinct area in the file.
Parameters of different extensions are stored separately
so that a complete extension's information can be updated
regardless of other information in the file.

ID

KIND
Explicit name

Extension 1 Extension 2 Extension n
Data of extensiotn 1 Data of extensiotn 2 Data of extensiotn n

Figure 5-2- Logical Structure of Object Buffer

Figure 5-2 shows the logical structure of an Object

Buffer on the file.

5.2. File Buffers

A File Buffer corresponds to a physical file and

controls the format, the coding and decoding algorithm
and the sequence in which Object Buffers are stored on
the hard disk. File buffers do this by calling operating
system routines.

6. Data flow in the system

In this section we explain how data flow from classes

to the hard disk in save and vise versa in load.

6.1. Save algorithm

Save always starts from a Library Declaration by

calling the save method for all library units in that library.
Since every library unit is stored in a separate file, it
creates a file buffer and passes it to all its objects. When
all object buffers are dumped to the file buffer it

Buffer Object Buffer Object

organizes the buffers and then dump them on the hard
disk.

On the other hand, when save method is called for an
object, it creates an object buffer and passes it to all
layers of hierarchy so that parameters of every class in
the hierarchy are stored in the object buffer. Finally
when all parameters are written, the object buffer is
dumped to the corresponding file buffer.

6.2. Load algorithm

A library unit is loaded accompanied with all its

dependencies. In fact load also links the files used in a
complete design. Since this linking occurs every time a
file is loaded, the standard and common files are not
transferred with the main files of a design.

However, VHDL relays heavily on its libraries and the
use clauses. To increase the performance of loading and
handling the objects, objects are fist virtually loaded and
then when they are referenced, they are actually loaded.

6.2.1. Virtual Load. Most of the time, users use ALL
keyword in use clauses. The process of loading the
whole library is extremely slow in such cases.

In virtual loading technique, when a library is asked to
load some library unit, it merely creates the
corresponding object and sets a not_loaded flag. Later
when a GOR addressing happens and the library unit of
the referenced object is not loaded yet, actual loading is
invoked.

6.2.2. Actual Load. Complete loading has two major
steps. In the fist step a list of objects of the file is created
and in the second step the relations are reconstructed.

In the first step, an item containing two data members
is added to the list for every object area in the file. These
items are shown in Figure 6-1. The buffer data member
is filed with the information of the object area then an
object is created based on the KIND variable of the
buffer.

Figure 6-1- Objects & Buffers

Creating and filling the buffers (first step) are handled

differently in file format related classes while the
operations of the second step are unique for all file

formats. In this step, processing the buffer contents
restores object's parameters. LOR and GOR addresses
are resolved using ID and explicit name respectively.

7. File formats

Supporting different file formats is not only necessary

for security but also required for some applications. For
example, text formats can be very useful in debugging
and academic uses. Currently the following file formats
are implemented in CHIRE.

7.1. Binary

A binary file in CHIRE has three major parts. The

Header contains the version number and basic data file
name. The Body includes the information of objects and
the Trailer contains a check sum of the whole file.
Binary object buffers are stored in separate areas in the
Body. Every area starts with the size of the buffer, the
unique ID of the object in the file, the kind of the object
and the explicit name. Other parameters of the object are
stored from this point on.

The length of strings and other dynamic length records
of data is stored before the main data of that record. For
example the string "TEXT" is stored as 4|T|E|X|T. The
binary format is very machine and operating system
dependent and relies heavily on the contents of basic data
file. Figure 7-1 shows the structure of binary format.

This format is very compact and has very fast load and
save routines. It is also very suitable for applying
security algorithms. But this format is not as portable as
text formats specially when transferred on different
machines and by means of some transfer protocols on the
network. On the hand it is not readable enough to be
used in tracing and debugging of the tools developed in
CHIRE. The data must be read in the same order they
have been written.

Figure 7-1- The binary file format structure

Buffer 1

version
Length of basic_data_file name

basic_data_file name
Size of BODY

Length of Buffer 1
ID

Kind
Length of explicit_name

explicit_name
Other data ...

...
Length of Buffer 2

...
Buffer 2 data

...
....

Check Sum

Buffer 2

Header

Body

Trailer

Buffer 1

Buffer 2

[Header]
vresion = 1.0
basic_data_file = Path of a file

[ID1]
kind = kind_string
explicit_name = . . .
. . .
LOR_ptr = [IDn]

[ID2]
. . .
GOR_ptr = {ver;. . .}
. . .

[IDn]

7.2. ini-text

The structure of this format is very similar to the ini

files in Windows. There is again a header that includes
the version number and basic data file name. For every
object buffer there is a different section identified by the
unique ID of the object. Parameters of the object are
stored in a "key=value" format. "[]" symbol is used for
LOR addresses and "{}" symbol is used for GOR
addresses (Error! Reference source not found.).

Besides being very portable, this format is so readable
that without having any compiler it is possible to write or
modify such files. The other important advantage is that
reading and writing orders can be different. Of course it
is obvious that the size of this format is much more than
binary format.

Figure 7-2- The ini-text file format structure

7.3. XML

XML is now a very well known format on the web and

there are a plenty of free tools available for this format.
Even browsers such as Microsoft Internet Explorer has
some facilities to browse XML file nicely. To store the
data of CHIRE in The XML format the HDML2 was

designed. This format is described in detail in [4]. In this
format, data are stored in tags and attributes. The only
disadvantage of this format is its large file size and slow
read and write algorithms. But it is very suitable for rule
checking and debugging.

8. Security aspects

File handlers in CHIRE are designed so that they do

not need to be aware of the nature of data and hence they
can be separate modules. This enables vendors and
designers to use specific formats that need specific

2 - Hardware Description Markup Language

handlers that check for example a license and then
decodes the file.

Handlers can also partially decode the data so that for
example a behavioral design is sold to the user while
structural information is also available (but coded) in it.
In this way when the user returns back his/her design and
the purchased code, structural information can be
decoded.

On the other hand, in a multi file structure, replacing
files (e.g. behavioral architecture with structural one or
simulatable with synthesizable) is very easy. Consider
how complex it would be if the purchased core was
mixed with the user's design.

CHIRE file system defines all portability issues clearly
and facilitates using unlimited formats and file handlers
that can help developers and vendors distribute their
compiled cells and libraries easily.

9. Conclusion

Security and portability are two major requirements

for developers using a standard intermediate format.
These two need contradictory properties, i.e. the former
needs unlimited and not known and standard techniques
while the latter needs every thing to be clearly defined.

Implementation and platform independency are two
aspects of portability. The CHIRE file system covers all
these requirements by introducing a very modular and
reconfigurable design.

Currently three file formats are implemented in
CHIRE. The Binary format is fast, compact and secure
but is not very readable. The ini-text format is readable
enough for debugging and tracing but its files are slower
and larger than binary files. XML format in CHIRE is
implemented based on HDML and is very suitable for
XML based applications.

10. References

[1] AIRE document Version 4.6 at http://www.eda.org/aire/.
[2] J.C. Willis, G.D. Peterson, S.L. Gregor, "The Advanced

Intermediate Representation with Extensibility / Common
Environment (AIRE/CE", IEEE Transaction on Computer,
1998.

[3] M.H. Reshadi, A.M.Gharehbaghi, Z.Navabi, Intermediate
Format Standardization: Ambiguities, Deficiencies,
Portability issues, Documentation and Improvements,
HDLCon 2000, March 2000.

[4] M.H.Reshadi, B.Gorji-Ara, Z.Navabi, "HDML: Compiled
VHDL in XML", VIUF 2000, October 2000.

