
Yes

No
Decode

Application
Binary Fetch Execute Decoded? Update

cache

Instruction
Decoder

Equivalent
source code

C++
Compiler

Application Binary

Executable
on Host

Init. Exec.

Run Time Compile Time

Reducing Compilation Time Overhead in Compiled Simulators
Mehrdad Reshadi, Nikil Dutt

Center for Embedded Computer Systems, University of California, Irvine
{reshadi, dutt}@cecs.uci.edu

Abstract
Compiled simulation is a well known technique for
improving the performance of instruction set simulators at
the cost of compilation time. However the compilation time
overhead makes such usage of compiler optimizations
impractical especially for large applications. In this paper,
we propose a hybrid compiled simulation approach that is
simple, generates an optimized decoder and has almost no
compilation overhead comparing to static compiled
simulation. Using two contemporary processor models--
ARM7 and Sparc-- we demonstrated that our technique can
reduce the compilation time by 99% on the average, from
several thousands of seconds to only tens of seconds.

1. Introduction
Instruction-set simulators are indispensable tools in the

development of new architectures. An important quality measure
for these tools is simulation performance and it depends on the
overhead of simulating target instructions vs. executing them
natively. Interpretive simulation is the simplest way of doing
this process but has poor performance. In interpretive
simulation, each instruction is fetched, decoded and executed at
run time. Compiled simulation reduces the overhead of
simulation and improves the performance by removing the
decode phase of each instruction from the simulation execution
loop and doing it once for all instructions. It may also generate
optimized code for instructions and hence further improves the
simulation speed. The main core of this technique is the
translation of the input instructions to an executable binary that
can run on the host machine. In dynamic compiled simulation,
such as [4], instruction translation is repeatedly applied to
portions (usually basic blocks) of the input program that are
executed and the results are stored for later reuse (Figure 1).

Figure 1- Dynamic compiled simulation flow

In static compiled simulation, such as [1], [2] the target
program binary is analyzed and compiled into a source code that
is functionally equivalent with the input program. This source
code is then optimized and compiled into the host binary and
executed on the host machine (Figure 2). Since the whole target
program is converted into a source code that must be compiled
and optimized by a compiler, this technique is only applicable if
the compiler can handle the size of the generated source code
and can finish the compilation in an acceptable amount of time.
On the other hand since the entire input program instructions are
decoded irrespective of being executed, the decoded information
may consume a lot of memory at run time. The compilation time
and memory usage depends on: size of input program; size,

structure and complexity of generated source code; the target
language and the used features; and level of details in
simulation. Since in dynamic compiled simulation the whole
program is not compiled in advance, it can handle much larger
input programs than static compiled simulation. However, it is
very difficult to generate optimized code in dynamic compiled
simulation.

Figure 2- Static compiled simulation flow

The previous efforts in compiled simulation either ignored the
compilation overhead and did not address it, or avoided it by
generating non-optimized decoded information at run time.
Among the works that have used compiled simulation technique
for ISA simulation, only [5] has explicitly investigated means of
reducing compilation time. In their approach, the output source
file is partitioned into smaller functions and the effect of the
number of functions on the compilation time is demonstrated.
They use assembly code of the input program rather than the
executable binary.

In this paper we propose a hybrid compiled simulation that
includes a static analysis of the input program followed by a
dynamic analysis at run time. In its static part, the input program
is analyzed to produce the source code of an optimized decoder
for that particular program. In the dynamic part, this decoder
analyzes the input program at run time and generates optimized
code for the instructions as if they were statically compiled and
optimized. This technique significantly reduces the compilation
time and memory usage while utilizing compiler optimizations
for generating optimized decoded instructions at run time. Using
two contemporary processor models--ARM7 and Sparc-- we
demonstrated that our technique can reduce the compilation time
by 99% on the average, from several thousands of seconds to
only tens of seconds. This hybrid approach is a general method
that can be applied to any simulation technique.

2. Hybrid Compiled Simulation
We propose a hybrid technique that combines both static and

dynamic compile simulation. As Figure 3 shows, in this
technique instead of generating a source code that is equivalent
to the input program, we generate the source code of a decoder
that is customized for that input program. In traditional static
compiled simulation, each instruction in the input program has a
corresponding code in the generated source code. However, a
more careful investigation of the instructions of a typical
program shows that the number of instruction types is
significantly less than the number of instances of instructions.
An instruction type is any variation of the instruction set of the
target architecture. For example in a program, there may be

Input Program
Binary

Generated Decoder
Source Code

C++
Compiler

Decoder
generator

Compile Time

Decode

Yes

No
Update
cache

Fetch Execute Decoded?
Input

Program
Binary

Run Time

Input Program Generated Source Code

Add1
…
Addn
Sub1
…
Subn

add1: AddInst
…
addn: AddInst
Sub1: SubInst
…
Subn: SubInst

Equivalent
Program

C++
Compiler

Application
Source code

generator

Input Program

Add1
…
Addn
Sub1
…
Subn

Switch(inst){
case Add: return AddInst;
…
case Sub: return SubInst;
}

Generated Source Code

Optimized
Decoder

C++
Compiler

Decoder
Source code

generator

Input
Program1

Switch(inst){
case Add: return AddInst;
…
case Sub: return SubInst;
}

Generated Source Code

Optimized
Decoder

C++
Compiler

Decoder
Source
code

generator Input
Programn

. . .

Set of Input Programs

many Add instructions in the form of Add Rx, Ry, Rz and many
others in the form of Add Rx, Ry, #immed. Therefore instead of
repeatedly generating code for instruction instances, we can
generate customized code for each instruction type that exists in
the program. Since number of instruction types is much less than
that of instruction instances, the generated source code is smaller
and requires considerably less time to compile. This code is then
compiled and optimized to generate a decoder that decodes the
input program again at run time, and for each instruction
instance, simply instantiates the corresponding optimized code
(instruction type). In this way, we use the static compiled
simulation approach to utilize the compiler optimizations at
compile time and then use the dynamic compiled simulation
approach to dynamically decode instructions to their
corresponding optimized codes at run time. In the next
subsections, we analyze different possible scenarios that this
hybrid technique can be used and then will compare them in the
result section.

Figure 3- Hybrid compiled simulation flow

2.1 Static decode of one program
This approach is the same as static compiled simulation. As

shown in Figure 4, the whole program is decoded at compile
time and for each instruction instance in that program a
customized code is added to the source code. The generated
source code is a set of functions that create instruction objects at
run time and load them in the instruction memory.

Figure 4- Static decode of one program

For example, if the program contains 1000 similar Add
instructions, there would be 1000 corresponding codes in the
generated source code and 1000 instantiations at run time.

2.2 Dynamic decode of one program.
As shown in Figure 5, in this approach the instructions of the

input program are analyzed and the individual instruction types
are detected. The generated source code is in fact a decoder that
contains a customized code for each instruction type that exists
in the input program. It analyzes the instructions of the program
at run time and decodes them by instantiating the optimized code
of the corresponding instruction type. The size of the generated
source code in this case is significantly smaller than the static
decode and hence the compilation time is considerably less. For
example, if the program contains 1000 similar Add instructions,
only one customized code is added to the decoder for that Add
instruction. At run time, each time the decoder detects such an
Add instruction, this code is instantiated. Therefore there would

be one customized code in the generated source code and 1000
instantiated at run time.

Figure 5- Dynamic decode of one program

2.3 Dynamic decode of multi-programs
It is also possible to analyze a group of input programs and

detect their instruction types and then generate one decoder for
all of them as shown in Figure 6. Our experiments show that a
large number of instruction types are common among different
programs. Therefore the size of the decoder is only slightly
bigger than that of a single program.

Figure 6- Dynamic decode of multiple program

The major benefit of this approach is that it requires one
compilation for all of the programs while in the previous
approaches, for each input program, the generated source code
must be compiled.

2.4 Dynamic decode for all ISA
The instructions of a program are a subset of all the variations

of the instructions in the instruction-set (ISA). Therefore, instead
of analyzing an input program and generating the decoder for
that particular program, it is better to generate all possible
variations of instructions in the instruction set and have a
decoder that can decode any input program on a specific
architecture. However, this approach is only applicable if the
number of these variations is not very large or if the simulator is
used for a fixed architecture and not in a design exploration
loop.

Figure 7- Dynamic decode of all ISA

For example, the Sparc processor has a simple instruction-set
and the number of variations of the instructions is less than
1000. On the other hand, the ARM processor has a very complex
instruction set and the number of variations of instructions is in
the range of several hundred thousand (~500k) instruction types.
Thus, using this approach for ARM processor not only has a
long compilation time, but also consumes a lot of memory for
decoder and hence is not practical at all.

3. Memory usage
Despite of generating optimized code, the decoder in our

hybrid approach is similar to the decoder in any other simulation
technique and can replace it. Therefore, its memory usage and
the decoded information can be handled similarly by well known

Architecture ISA
Description Switch(inst){

case Addimm, flag: return AddInstimm, flag;
case Addreg, flag: return AddInstreg, flag;
case Addimm, no flag: return AddInstimm, no flag;
…
}

Optimized
Decoder

C++
Compiler Decoder

Source
code

generator
Instruction
Variation
Generator

Generated Source Code

techniques and data structures such as a software cache. On the
other hand, while the decoder generated in our approach can
generate optimized code, it does not need to implement any
optimization algorithm and simply uses the pre-optimized codes
that the compiler has generated. In this way, if the number of
instruction types in the program is not very large, the size of our
decoder is comparable to (or even less than) the size of a
traditional dynamic compiled simulation decoder that performs
some optimizations during decode at run time. Our experiments
show that usually the number of instruction types is very low
even when multiple programs are processed to generate a single
decoder for all of them.

4. Results
We conducted our case studies with two contemporary

processor models: ARM7 and Sparc. We used the Instruction-
Set Compiled Simulation (IS-CS) technique [3] to implement
the optimized decoder in our simulator. In this section we show
the results using four application programs: adpcm, jpeg, 099.go
and 129.compress. The results were obtained on a 2.4 GHz
Pentium 4 with 512 MB of RAM. In all experiments, each
source file contained up to 100 functions and each function
contained up to 100 instruction decoding.

46879 47590
7292

39522106964 152805105991201433

12612512483
504490444434

1
10

100
1000

10000

100000
1000000

adpcm compress go All 3 adpcm compress go All 3

ARM SPARC

#o
f

in
st

ru
ct

io
n

s
(l

o
g

ar
it

h
m

ic
) static

hybrid

Figure 8- Source file size in different techniques

Figure 8 shows the number of instructions that are generated
in the output source file in each technique for both processor
models. For each benchmark, the first bar shows the total
number of instruction instances in the input program binary (and
hence the output of static compiled simulation) and the second
bar shows the number of distinct instruction types that exists in
that benchmark (and hence the output of hybrid compiled
simulation). The last pair of bars shows these numbers for all 3
benchmarks together. Interestingly, compared to the number of
instruction instances, the number of instruction types change
slightly between benchmarks and have a lot of commonality.

8824 8956

1100
4200

10700

592

19844

340340340320
588548 556

1

10

100

1000

10000

100000

adpcm compress go A ll 3 adpcm compress go All 3

ARM SPARC

K
B

 (
lo

g
ar

it
h

m
ic

)

static

hybrid

Figure 9- Executable file size in different techniques

Similarly, Figure 9 shows the size of the executable binary
file after compilation. Note that in the static compiled
simulation, all of the instructions are decoded even if they are
not executed at all. In our experience, we got very similar
performance results from both static and our hybrid compiled
simulation. However, se believe that in the hybrid approach, the
instructions must be decoded again at run time, but the smaller
executable size improves the cache behaviour of the hybrid

simulator compared to that of the static compiled simulator and
therefore compensates the extra run time decoding overhead.

4184 4902
10080

289
1315

3616

41 41 47 48
13 15 16 16

1

10

100

1000

10000

100000

adpcm compress go All 3 adpcm compress go All 3

ARM SPARCT
im

e
(s

ec
)

(l
o

g
ar

it
h

m
ic

)

static

hybrid

Figure 10- Compilation time in different techniques

Figure 10 shows the comparison of the compilation time of
hybrid and compiled simulation. In our experiments, the average
compilation time was about 4100 seconds for static compiled
simulation and about 30 seconds for our hybrid compiled
simulation. This shows an almost 99% reduction in average
compilation time, while still benefiting from all the advantages
of static compiled simulation. The hybrid complied simulationis
described in more detail in [6].

5. Summary
In this paper we proposed a hybrid compiled simulation

technique that utilizes the advantages of both static and dynamic
compiled simulation and avoids their disadvantages. In this
approach, the input program is first analyzed and an optimized
decoder is generated for that program using a conventional (C,
C++, etc.) compiler. The decoder is then used by the simulation
engine to decode the simulated instructions to optimized
decoded information at run time. While the technique is
applicable to any execution model, we used our Instruction-Set
Compiled Simulation (IS-CS) technique to show the advantages
of the hybrid compiled simulation technique. The results showed
a 99% reduction in compilation time without any performance
loss.

6. Acknowledgments
This work was partially supported by NSF grants CCR-

0203813 and CCR-0205712.

7. References
[1] G. Braun et al. Using Static Scheduling Techniques for the

Retargeting of High Speed, Compiled Simulators for Embedded
Processors from an Abstract Machine Description. ISSS, 2001.

[2] J. Zhu et al. A Retargetable, Ultra-fast Instruction Set Simulator.
DATE, 1999.

[3] M. Reshadi et al, Instruction-Set Compiled Simulation: A
technique for fast and flexible instruction set simulation, DAC,
2003.

[4] R.F. Cmelik, et al. Shade: A fast instruction set simulator for
execution profiling. Proceedings of 1994 ACM SIGMETTRICS
Conference on Measurment and Modeling of computer systems,
Philadelphia, 1994.

[5] R. Amicel et al. Mastering startup costs in assembler-based
compiled instruction-set simulation. Proceedings of Workshop
on interaction between Compilers and Computer Architectures
(INTERACT’02), 2002.

[6] M. Reshadi, N. Dutt. Hybrid Compiled Simulation. ICS
Technical Report#03-23, University of California, Irvine, 2003.

