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Abstract 
Compiled simulation is a well known technique for 
improving the performance of instruction set simulators at 
the cost of compilation time. However the compilation time 
overhead makes such usage of compiler optimizations 
impractical especially for large applications. In this paper, 
we propose a hybrid compiled simulation approach that is 
simple, generates an optimized decoder and has almost no 
compilation overhead comparing to static compiled 
simulation. Using two contemporary processor models--
ARM7 and Sparc-- we demonstrated that our technique can 
reduce the compilation time by 99% on the average, from 
several thousands of seconds to only tens of seconds.  

1. Introduction 
Instruction-set simulators are indispensable tools in the 

development of new architectures. An important quality measure 
for these tools is simulation performance and it depends on the 
overhead of simulating target instructions vs. executing them 
natively. Interpretive simulation is the simplest way of doing 
this process but has poor performance. In interpretive 
simulation, each instruction is fetched, decoded and executed at 
run time. Compiled simulation reduces the overhead of 
simulation and improves the performance by removing the 
decode phase of each instruction from the simulation execution 
loop and doing it once for all instructions. It may also generate 
optimized code for instructions and hence further improves the 
simulation speed. The main core of this technique is the 
translation of the input instructions to an executable binary that 
can run on the host machine. In dynamic compiled simulation, 
such as  [4], instruction translation is repeatedly applied to 
portions (usually basic blocks) of the input program that are 
executed and the results are stored for later reuse (Figure 1).  

 

Figure 1- Dynamic compiled simulation flow 

In static compiled simulation, such as  [1], [2] the target 
program binary is analyzed and compiled into a source code that 
is functionally equivalent with the input program. This source 
code is then optimized and compiled into the host binary and 
executed on the host machine (Figure 2). Since the whole target 
program is converted into a source code that must be compiled 
and optimized by a compiler, this technique is only applicable if 
the compiler can handle the size of the generated source code 
and can finish the compilation in an acceptable amount of time. 
On the other hand since the entire input program instructions are 
decoded irrespective of being executed, the decoded information 
may consume a lot of memory at run time. The compilation time 
and memory usage depends on: size of input program; size, 

structure and complexity of generated source code; the target 
language and the used features; and level of details in 
simulation. Since in dynamic compiled simulation the whole 
program is not compiled in advance, it can handle much larger 
input programs than static compiled simulation. However, it is 
very difficult to generate optimized code in dynamic compiled 
simulation. 

 

Figure 2- Static compiled simulation flow 

The previous efforts in compiled simulation either ignored the 
compilation overhead and did not address it, or avoided it by 
generating non-optimized decoded information at run time. 
Among the works that have used compiled simulation technique 
for ISA simulation, only  [5] has explicitly investigated means of 
reducing compilation time. In their approach, the output source 
file is partitioned into smaller functions and the effect of the 
number of functions on the compilation time is demonstrated. 
They use assembly code of the input program rather than the 
executable binary.  

In this paper we propose a hybrid compiled simulation that 
includes a static analysis of the input program followed by a 
dynamic analysis at run time. In its static part, the input program 
is analyzed to produce the source code of an optimized decoder 
for that particular program. In the dynamic part, this decoder 
analyzes the input program at run time and generates optimized 
code for the instructions as if they were statically compiled and 
optimized. This technique significantly reduces the compilation 
time and memory usage while utilizing compiler optimizations 
for generating optimized decoded instructions at run time. Using 
two contemporary processor models--ARM7 and Sparc-- we 
demonstrated that our technique can reduce the compilation time 
by 99% on the average, from several thousands of seconds to 
only tens of seconds. This hybrid approach is a general method 
that can be applied to any simulation technique.  

2. Hybrid Compiled Simulation 
We propose a hybrid technique that combines both static and 

dynamic compile simulation. As Figure 3 shows, in this 
technique instead of generating a source code that is equivalent 
to the input program, we generate the source code of a decoder 
that is customized for that input program. In traditional static 
compiled simulation, each instruction in the input program has a 
corresponding code in the generated source code. However, a 
more careful investigation of the instructions of a typical 
program shows that the number of instruction types is 
significantly less than the number of instances of instructions. 
An instruction type is any variation of the instruction set of the 
target architecture. For example in a program, there may be 
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many Add instructions in the form of Add Rx, Ry, Rz and many 
others in the form of Add Rx, Ry, #immed. Therefore instead of 
repeatedly generating code for instruction instances, we can 
generate customized code for each instruction type that exists in 
the program. Since number of instruction types is much less than 
that of instruction instances, the generated source code is smaller 
and requires considerably less time to compile. This code is then 
compiled and optimized to generate a decoder that decodes the 
input program again at run time, and for each instruction 
instance, simply instantiates the corresponding optimized code 
(instruction type). In this way, we use the static compiled 
simulation approach to utilize the compiler optimizations at 
compile time and then use the dynamic compiled simulation 
approach to dynamically decode instructions to their 
corresponding optimized codes at run time. In the next 
subsections, we analyze different possible scenarios that this 
hybrid technique can be used and then will compare them in the 
result section. 

 

Figure 3- Hybrid compiled simulation flow 

2.1 Static decode of one program 
This approach is the same as static compiled simulation. As 

shown in Figure 4, the whole program is decoded at compile 
time and for each instruction instance in that program a 
customized code is added to the source code. The generated 
source code is a set of functions that create instruction objects at 
run time and load them in the instruction memory. 

 
Figure 4- Static decode of one program 

For example, if the program contains 1000 similar Add 
instructions, there would be 1000 corresponding codes in the 
generated source code and 1000 instantiations at run time.  

2.2 Dynamic decode of one program. 
As shown in Figure 5, in this approach the instructions of the 

input program are analyzed and the individual instruction types 
are detected. The generated source code is in fact a decoder that 
contains a customized code for each instruction type that exists 
in the input program. It analyzes the instructions of the program 
at run time and decodes them by instantiating the optimized code 
of the corresponding instruction type. The size of the generated 
source code in this case is significantly smaller than the static 
decode and hence the compilation time is considerably less. For 
example, if the program contains 1000 similar Add instructions, 
only one customized code is added to the decoder for that Add 
instruction. At run time, each time the decoder detects such an 
Add instruction, this code is instantiated. Therefore there would 

be one customized code in the generated source code and 1000 
instantiated at run time. 

 

Figure 5- Dynamic decode of one program 

2.3 Dynamic decode of multi-programs 
It is also possible to analyze a group of input programs and 

detect their instruction types and then generate one decoder for 
all of them as shown in Figure 6. Our experiments show that a 
large number of instruction types are common among different 
programs. Therefore the size of the decoder is only slightly 
bigger than that of a single program. 

 

Figure 6- Dynamic decode of multiple program 

The major benefit of this approach is that it requires one 
compilation for all of the programs while in the previous 
approaches, for each input program, the generated source code 
must be compiled. 

2.4 Dynamic decode for all ISA  
The instructions of a program are a subset of all the variations 

of the instructions in the instruction-set (ISA). Therefore, instead 
of analyzing an input program and generating the decoder for 
that particular program, it is better to generate all possible 
variations of instructions in the instruction set and have a 
decoder that can decode any input program on a specific 
architecture. However, this approach is only applicable if the 
number of these variations is not very large or if the simulator is 
used for a fixed architecture and not in a design exploration 
loop.  

 

Figure 7- Dynamic decode of all ISA 

For example, the Sparc processor has a simple instruction-set 
and the number of variations of the instructions is less than 
1000. On the other hand, the ARM processor has a very complex 
instruction set and the number of variations of instructions is in 
the range of several hundred thousand (~500k) instruction types. 
Thus, using this approach for ARM processor not only has a 
long compilation time, but also consumes a lot of memory for 
decoder and hence is not practical at all. 

3. Memory usage 
Despite of generating optimized code, the decoder in our 

hybrid approach is similar to the decoder in any other simulation 
technique and can replace it. Therefore, its memory usage and 
the decoded information can be handled similarly by well known 
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techniques and data structures such as a software cache. On the 
other hand, while the decoder generated in our approach can 
generate optimized code, it does not need to implement any 
optimization algorithm and simply uses the pre-optimized codes 
that the compiler has generated. In this way, if the number of 
instruction types in the program is not very large, the size of our 
decoder is comparable to (or even less than) the size of a 
traditional dynamic compiled simulation decoder that performs 
some optimizations during decode at run time. Our experiments 
show that usually the number of instruction types is very low 
even when multiple programs are processed to generate a single 
decoder for all of them. 

4. Results 
We conducted our case studies with two contemporary 

processor models: ARM7 and Sparc. We used the Instruction-
Set Compiled Simulation (IS-CS) technique  [3] to implement 
the optimized decoder in our simulator. In this section we show 
the results using four application programs: adpcm, jpeg, 099.go 
and 129.compress. The results were obtained on a 2.4 GHz 
Pentium 4 with 512 MB of RAM. In all experiments, each 
source file contained up to 100 functions and each function 
contained up to 100 instruction decoding. 

46879 47590
7292

39522106964 152805105991201433

12612512483
504490444434

1
10

100
1000

10000

100000
1000000

adpcm compress go All 3 adpcm compress go All 3

ARM SPARC

#o
f 

in
st

ru
ct

io
n

s 
(l

o
g

ar
it

h
m

ic
) static

hybrid

 
Figure 8- Source file size in different techniques 

Figure 8 shows the number of instructions that are generated 
in the output source file in each technique for both processor 
models. For each benchmark, the first bar shows the total 
number of instruction instances in the input program binary (and 
hence the output of static compiled simulation) and the second 
bar shows the number of distinct instruction types that exists in 
that benchmark (and hence the output of hybrid compiled 
simulation). The last pair of bars shows these numbers for all 3 
benchmarks together. Interestingly, compared to the number of 
instruction instances, the number of instruction types change 
slightly between benchmarks and have a lot of commonality. 
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Figure 9- Executable file size in different techniques 

Similarly, Figure 9 shows the size of the executable binary 
file after compilation. Note that in the static compiled 
simulation, all of the instructions are decoded even if they are 
not executed at all. In our experience, we got very similar 
performance results from both static and our hybrid compiled 
simulation. However, se believe that in the hybrid approach, the 
instructions must be decoded again at run time, but the smaller 
executable size improves the cache behaviour of the hybrid 

simulator compared to that of the static compiled simulator and 
therefore compensates the extra run time decoding overhead.  

4184 4902
10080

289
1315

3616

41 41 47 48
13 15 16 16

1

10

100

1000

10000

100000

adpcm compress go All 3 adpcm compress go All 3

ARM SPARCT
im

e 
(s

ec
) 

(l
o

g
ar

it
h

m
ic

)

static

hybrid

 
Figure 10- Compilation time in different techniques 

Figure 10 shows the comparison of the compilation time of 
hybrid and compiled simulation. In our experiments, the average 
compilation time was about 4100 seconds for static compiled 
simulation and about 30 seconds for our hybrid compiled 
simulation. This shows an almost 99% reduction in average 
compilation time, while still benefiting from all the advantages 
of static compiled simulation. The hybrid complied simulationis 
described in more detail in  [6]. 

5. Summary 
In this paper we proposed a hybrid compiled simulation 

technique that utilizes the advantages of both static and dynamic 
compiled simulation and avoids their disadvantages. In this 
approach, the input program is first analyzed and an optimized 
decoder is generated for that program using a conventional (C, 
C++, etc.) compiler. The decoder is then used by the simulation 
engine to decode the simulated instructions to optimized 
decoded information at run time. While the technique is 
applicable to any execution model, we used our Instruction-Set 
Compiled Simulation (IS-CS) technique to show the advantages 
of the hybrid compiled simulation technique. The results showed 
a 99% reduction in compilation time without any performance 
loss.  
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