Reducing Compilation Time Overhead in Compiled Simulators

Mehrdad Reshadi, Nikil Dutt
Center for Embedded Computer Systems, University of California, Irvine

{reshadi, dutt}@cecs.uci.edu

Abgract

Compiled smulation is a well known technique for
improving the performance of ingruction set smulators at
the cost of compilation time. However the compilation time

structure and complexity of generated source code; the target
language and the used features; and level of details in
simulation. Since in dynamic compiled simulation the whole
program is not compiled in advance, it can handle much larger
input programs than static compiled simulation. Howeves, i

very difficult to generate optimized code in dynamic compiled

overhead makes such usage of compiler optimizations _ '
simulation.

impractical especially for large applications. In this paper,

we propose a hybrid compiled smulation approach that is Application Binan] (~ B () O

simple, generates an optimized decoder and has almost no _ Equiva'em ScauEll o @
A . . R Instructior source code on Host

compilation overhead comparing to datic compiled

simulation. Using two contemporary processor models- Compile Tims Run Time

ARM7 and Sparc-- we demongtrated that our technique can
reduce the compilation time by 99% on the average, from

Figure 2- Static compiled simulation flow

The previous efforts in compiled simulation either ignored the
several thousands of secondsto only tens of seconds. compilation overhead and did not address it, or avoided it by
1. Introduction generating non-optimized decoded in_forma_ltion at run tir_ne.
i) o) Among the works that have used compiled simulation technique
Instruction-set simulators are indispensable tools in thefor |SA simulation, only5] has explicitly investigated means of
development of new architectures. An important quality measurgeducing compilation time. In their approach, the output source
for these tools is simulation performance and it dependseon fjle is partitioned into smaller functions and the effettthe
overhead of simulating target instructions vs. executing themyymper of functions on the compilation time is demonstrated.

natively. Interpretive smulation is the simplest way of doing They use assembly code of the input program rather than the
this process but has poor performance. In interpretiveexecutable binary.

simulation, each instruction is fetched, decoded and executed at | this paper we propose a hybrid compiled simulation that

run time. Compiled smulation reduces the overhead of jncludes a static analysis of the input program followgda
simulation and improves the performance by removing thegynamic analysis at run time. In its static part, the input program
decode phase of each instruction from the simulation executionig analyzed to produce the source code of an optimized adecode
loop and doing it once for all instructions. It may also geeer for that particular program. In the dynamic part, this decoder
optimized code for instructions and hence further imprdves t analyzes the input program at run time and generates optimize
simulation speed. The main core of this technique is thegode for the instructions as if they were staticaliypided and
translation of the input instructions to an executablerpitieat optimized. This technique significantly reduces the conpitat
can run on the host machine. dynamic compiled simulation, time and memory usage while utilizing compiler optimizasi
such as[4], instruction translation is repeatedly applied to for generating optimized decoded instructions at run timegUsi
portions (usually basic blocks) of the input program #w& two contemporary processor models--ARM7 and Sparc-- we
executed and the results are stored for later reuse (Figure 1). demonstrated that our technique can reduce the compilation time
. v by 99% on the average, from several thousands of seconds to
ARy NO only tens of seconds. This hybrid approach is a generabhet
Yes that can be applied to any simulation technique.

Figure 1- Dynamic compiled simulation flow 2 Hybrid Compiled Simulation

In static_ corr_piled simulation, SUCh. as_[l],[2] the target We propose a hybrid technique that combines both static and
program binary is analyzed and compiled into a source code thaotynamic compile simulation. As Figure 3 shows, in this

is functionally equivalent with the input program. This source echnique instead of generating a source code that is emtival

code is then optimized ano_l com_piled into Fhe host binary anr{o the input program, we generate the source code of a decoder
executed on the host machine (Figure 2). Since the whole targef o+ is customized for that input program. In traditiostakic

program 1S converted Into & source coc_je thz_at must be _‘E‘_@mp" compiled simulation, each instruction in the input program has a
and optimized by a compiler, this technique is only applicéble orresponding code in the generated source code. However, a
the compiler can handle the size of the generated source co ore careful investigation of the instructions of. a tghic '
and can finish the compilation in an acceptable amountnef ti rogram shows that the number of instructitypes is

On the other hand since the entire input program instructions ar. ignificantly less than the number of instances of inttme
decoded irrespective of being executed, the decoded informatio n instructiontype is any variation of the instruction set of the

may consume a lot of memory at run ime. T_he compilation t'metarget architecture. For example in a program, there may be
and memory usage depends on: size of input program; size,

manyAdd instructions in the form ofdd R, R, R, and many be one customized code in the generated source code and 1000
others in the form ofAdd R, R, #immed. Therefore instead of instantiated at run time.
repeatedly generating code for instructimstances, we can
generate customized code for each instrudgipathat exists in
the program. Since number of instructtgpes is much less than
that of instructiorinstances, the generated source code is smaller
and requires considerably less time to compile. This code is ther
compiled and optimized to generate a decoder that decodes the
input program ggain at run time, and fo_r each i_nstruction2_3 Dynamic decode of multi-programs
instance, simply instantiates the corresponding optimized code . . i
(instruction type). In this way, we use the static compiled It is also possible to analyze a group of input progranus
simulation approach to utilize the compiler optimizatiats detect their instruction types and then generate one decoder for
compile time and then use the dynamic compiled simulation@ll of them as shown in Figure 6. Our experiments show that a
approach to dynamically decode instructions to their large number of instructiotypes are common among dlffergnt
corresponding optimized codes at run time. In the nextPrograms. Therefore _the size of the decoder is only slightl
subsections, we analyze different possible scenariostiifsat ~ Rigger than that of a single program.
hybrid technique can be used and then will compare them in the Switch(inst){
.. Source Optimized
code
&> |
Binary generator Source Code o Setof Input Progran Generated Source Cc
e COMPIETIME, Figur e 6- Dynamic decode of multiple program

Switch(inst){
case Add: return AddlInst;

Decodel
Source code
generator

Optimized
Decode

Eése Sub: return Sublnst;

Input Prograr Generated Source Cc

Figure 5 Dynamic decode of one program

Decodel

result section case Add: return AddInst;
generatc case Sub: return Sublns ;

0

Yeg| -+

Input i : i i i i
Program NO The major benefit of this approach is that it requires one

Binary compilation for all of the programs while in the previous
Run Time’ approaches, for each input program, the generated source code
must be compiled.

_ 2.4 Dynamic decode for all ISA
2.1 Static decode of one program The instructions of a program are a subset of all the vargatio

This approach is the same as static compiled simulati®n. A of the instructions in the instruction-set (ISA). Therefore, instead
shown in Figure 4, the whole program is decoded at compileof analyzing an input program and generating the decoder for
time and for each instructiomstance in that program a that particular program, it is better to generate all ipless
customized code is added to the source code. The generatedriations of instructions in the instruction set and have
source code is a set of functions that create instructjeststat ~ decoder that can decode any input program on a specific
run time and load them in the instruction memory. architecture. However, this approach is only applicabkef

number of these variations is not very large or if the simuiat
Equivalent
Program

used for a fixed architecture and not in a design exploration
Figure 4- Static decode of one program

loop.
Instruction
For example, if the program contains 1000 simiaid
instructions, there would be 1000 corresponding codes in th
generated source code and 1000 instantiations at run time. Figure 7- Dynamic decode of all | SA

Variation
2.2 Dynamic decode of one program. For example, the Sparc processor has a simple instruction-set

Generatc

As shown in Figure 5, in this approach the instructions of the@"d the number of variations of the instructions is tess
input program are analyzed and the individual instruagipes ~ +000- On the other hand, the ARM processor has a very complex
are detected. The generated source code is in fact a dewatder tinstruction set and the number of variations of instrostie in
contains a customized code for each instrudijpa that exists the range of se_veral hundred thousand (~500k) instruction types.
in the input program. It analyzes the instructions of togram ~ 11'US, using this approach for ARM processor not only has a
at run time and decodes them by instantiating the optimized codi®nd compilation time, but also consumes a lot of mgniar
of the corresponding instructidype. The size of the generated decoder and hence is not practical at all.
source code in this case is significantly smaller thenstatic 3 M emory usage
decode and hence the compilation time is considerablyHess.) . e .
example, if the program contains 1000 simAdd instructions, Despite of generating optimized code, the decoder in our
only one customized code is added to the decoder foAdaat hybrid approach is similar to the decoder in any other simulation
instruction. At run time, each time the decoder detects such atéchnique and can replace it. Therefore, its memory usage and
Add instruction, this code is instantiated. Therefore thevelay € decoded information can be handled similarly by well known

Figure 3- Hybrid compiled simulation flow

adc;: Addins!

Application
Source code
generator

aadn: AddInst
Suh: Sublinst

éﬁtn: Sublns
Input Prograr Generated Source Cc

Switch(inst){

case Adghm, fiag return AddInstm, fiag
case Adeg fiag return AddInstg fiag
case Adghm, no fiag return AddIngtim, no flag

Decodet
Source

code
generatoy

Generated Source Cc

11%

techniques and data structures such as a software cactiee On simulator compared to that of the static compiled siroukatd
other hand, while the decoder generated in our approach catmerefore compensates the extra run time decoding overhead.
generate optimized code, it does not need to implement anjooo0
optimization algorithm and simply uses the pre-optimized codes 100
that the compiler has generated. In this way, if the number of £
instruction types in the program is not very large, the size of ouf
decoder is comparable to (or even less than) the siz of
traditional dynamic compiled simulation decoder that perfo
some optimizations during decode at run time. Our experiment
show that usually the number of instruction types is Veny
even when multiple programs are processed to generaigla si

m
A
o
=}
o

O static
8 hybrid

i
o=}
o o

Time (sec) (logarit
[

192]

Figure 10- Compilation timein different techniques

decoder for all of them. Figure 10 shows the comparison of the compilation time of
hybrid and compiled simulation. In our experiments, the average
4. Results compilation time was about 4100 seconds for static cemhpil

We conducted our case studies with two contemporarysimulation and about 30 seconds for our hybrid compiled
processor models: ARM7 and Sparc. We used the Instructionsimulation. This shows an almost 99% reduction in average
Set Compiled Simulation (IS-CS) technig8} to implement compil_ation time, w_hile st_iII benefiting from all t_he a_dmgg_s
the optimized decoder in our simulator. In this sectiorskev of static compiled simulation. The hybrid complied simolait
the results using four application programs: adpcm, jpeg, 099.gélescribed in more detail [6].
and 129.compress. The results were obtained on a 2.4 GH
Pentium 4 with 512 MB of RAM. In all experiments, each 5 Summary

source file contained up to 100 functions and each function In this paper we proposed a hybrid compiled simulation
contained up to 100 instruction decoding. technique that utilizes the advantages of both static and dynamic

compiled simulation and avoids their disadvantages. In this
approach, the input program is first analyzed and an optimize
decoder is generated for that program using a conventi@pal (
Bt C++, etc.) compiler. The decoder is then used by the simulation
engine to decode the simulated instructions to optimized
decoded information at run time. While the technique is
applicable to any execution model, we used our Instru&ein

1000000 201433

46879 47590 106964 152805
100000 39522 105991

n
) B

1)
Q9
ISES]
ISES)

#of instructions
(logarithmic;

Figure 8- Sour cefilesizein different techniques Compiled Simulation (IS-CS) technique to show the advantages
Figure 8 shows the number of instructions that are generateﬂf the hybrid c_omplled S|m_ula_t|on _technlque. The results showed
in the output source file in each technique for both processoE 99% reduction in compilation time without any performance

models. For each benchmark, the first bar shows the tota®SS:

number of instruction instances in the input program binary (andg, Acknowledgments
hence the output of static compiled simulation) and the second . .
bar shows the number of distinct instruction types thateki This work was partially supported by NSF grants CCR-
that benchmark (and hence the output of hybrid compiled?203813 and CCR-0205712.

simulation). The last pair of bars shows these numbe@lf@r 7, References

benchmarks together. Interestingly, compared to the number
instruction instances, the number of instructiotypes change
slightly between benchmarks and have a lot of commonality.

O[fl] G. Braun et al. Using Static Scheduling Techniques Her t
Retargeting of High Speed, Compiled Simulators for Eidbd
Processors from an Abstract Machine Descriptio8S|S2001.

122222 gg2s sose 19844 10700 [2] J. Zhu et al. A Retargetable, Ultra-fast InstructionSeulator.

DATE, 1999.

[3] M. Reshadi et al, Instruction-Set Compiled Simulation: A

technique for fast and flexible instruction set simalgtiDAC,

2003.

compress [4] R.F. Cmelik, et al. Shade: A fast instruction set oo for

_ _ _ execution profiling. Proceedings of 1994 ACM SIGMETTRICS

Figure9- Executablefilesizein different techniques Conference on Measurment and Modeling of computer systems
Similarly, Figure 9 shows the size of the executable pinar Philadelphia, 1994.

file after compilation. Note that in the static compiled [5]R. Amicel et al. Mastering startup costs in assentideed

simulation, all of the instructions are decoded even if trey compiled instruction-set simulation. Proceedings of 8ok

not executed at all. In our experience, we got very similar ~ On interaction between Compilers and Computer Arduites
performance results from both static and our hybrid compiled[6] l\(/:NTIEeZﬁg;—i 02&' 2(|)30uzt.t Hybrid Compiled Simulation. 1CS
ﬂg}ﬂiﬂggskﬁlﬁ?ﬁe é’ ds gcgglézvgégﬁ :’:t trrl:?] Tl)rl]:) gfjbi?%ﬂal Technical Report#03-23, University of California, I®jr2003.
executable size improves the cache behaviour of the hybrid

51000
E 100
10

KB (logari

