O The 12" International Conference on Microelectronics

Tehran, Oct. 31- Nov. 2,2000

AIRE/CE : A Revision Towards CAD Tool Integration

Mohammad Hossein Reshadi, Amir Masoud Gharehbaghi, Zainalabedin Navabi
Electrical and Computer Engineering Department
Faculty of Engineering / University of Tehran / Tehran, Iran

{reshadi,amir}@cad.ece ut.ac ir. navabi@ece.neu.edu

Abstract

The growth in Micro Electronic industry demands
more capabilities from CAD tools. This requires
better-integrated environments and more design
portability across platforms and tools. The move
towards hardware description languages in recent
years and interoperability puts a pressure on EDA
vendors to come up with a well-defined standard
intermediate format. The draft AIRE/CE
intermediate format, as distributed publicly on the
Web, is one such standard. Although this standard
may be better defined and better documented than
any other proposed standards for this purpose, it has
shortcomings that must be resolved before it is
adapted by the EDA vendors and designers. This
paper discusses CAD tool integration problems and
reviews the AIRE weaknesses in this area and also
presents our solutions according to our experiences
with the AIRE implementation’.

Keywords : Object-Oriented Intermediate Format,
AIRE/CE, IIR, FIR, HDL, CAD Tool Integration.

*+ Introduction

Design process has been changed since the
beginning of microelectronic industry. Automating
the design process has been the main goal of these
changes. The role of hardware description languages,
such as VHDL and Verilog in design process has
become more vital nowadays. However,
manufacturers have developed many CAD tools in
various design areas such as simulation, synthesis,
test generation, and verification. Design of a real
system requires several CAD tools from higher levels
of abstraction to lower levels. Since it is very difficult
for a developer to fulfill all the designer needs, many
designers employ several tools from different
manufactures in various stages of their design.

! The version of AIRE/CE being discussed in this paper is the
version that is publicly circulated on the Web [1], and several
companies commercially use versions if AIRE/CE which may
differ from the publicly available draft and which may address
issues raised in this paper. AIREis a trademark of FTL Systems.

277

The main problem of designers to use different
tools from different companies is feeding in data
generated by a tool to another one. The tool
developers also face this problem in interfacing with
other tools from other vendors. In all the cases
sharing the design information between various tools
is the main problem of CAD tool integration.

Consider an environment in which several
components exist that work with a standard
intermediate format. For example a schematic editor,
HDL analyzers, software compilers, a waveform
editor, digital and analog simulators, synthesis tools,
and verification tools share information through
intermediate files. Each module works independently
and is not worried about the implementation of
others, because all of them communicate through a
standard known intermediate format. In this way it is
possible to build a complete environment in a short
time. Tool developers can concentrate on what they
are expert in without having to spend extra effort on
other modules. It is also possible to have many
similar modules, with different functionality, and
configure them properly for each design. (Figure 1)

A good intermediate format plays a major role in
bringing these ideas to life. In section 2 we discuss
the specifications of a suitable intermediate format
for CAD tool integration. In section 3 AIRE/CE will
be introduced as a good candidate. In section 4 some
shortcomings and deficiencies of AIRE/CE and our
solutions for them will be proposed. In section 5 we
have conclusion and also the future work.

| Verilog | {vHDL/AMS|| Schematic |

{

Test Bench
Generation

Figure 1. Usage of an Intermediate Format

-]
Iﬂg The 12" International Conference on Microelectronics

2. Specification of a Suitable IF
for Integration

An intermediate format must have some
specifications to be suitable for CAD tool integration.
In this section we discuss briefly about the most
important needed specifications.

2.1. Completeness

Designers need to describe their design in
various forms, from behavioral to transistor level It
is possible to partition the whole system into
subsystems and employ an appropriate specification
for each subsystem. It is also possible to purchase
subsystems or cores from different vendors and
integrate them to make up the system. Most real-
world applications consist of analog and digital
components. So the designer must be able to test the
whole system in a uniform environment. Today, one
of the choices of a designer is to specify and test the
software of a system simultaneously with its
hardware.

In all the above cases the design environment
should be able to hold the design information from
different levels of specification uniformly.

2.2. Portability

The main feature of a suitable IF for integration
is portability. Portability can be defined in two areas:
portability over platform, and portability over
implementation. Compiled designs must be portable
over hardware and/or operating systems. Changing
hardware or even operating system of the same
hardware can cause portability problems. In addition
designs must be reusable over all the tools that
comply with the IF standard for their interfaces.
Different versions of a tool and also tools from
different companies must accept a previously
compiled design.

The representation of intermediate format in file
and also memory is the main key for portability and
also CAD tool integration. i

2.3. Documentation

Documentation plays a major role in success of a
standard IF. Systematic upgrade and review as well
as regular updates are essential for documentation of
a standard. A well-documented standard enables both
developers and users to concentrate on their specific
work without extra effort to make their tool
compatible with other ones.

Tehran, Oct. 31- Nov. 2,2000

3. AIRE Introduction

Over the past decade,” many efforts have been
done to develop a suitable IF for hardware
description languages. Researches from
govemmental, academic and EDA vendors have been
working on developing an IF. The main effort for
standardization of an IF was by the IEEE DASC
working group, which was unsuccessful in reaching
its goals. Other efforts led -to the AIRE/CE
(Advanced Intermediate Representation with
Extensibility/Common Environment), representation
which is an object-oriented IF designed to support
VHDL, VHDL-AMS, Verilog, and other languages.
Worked into AIRE is extensibility capability, which
makes this standard adaptable to new applications.
The memory representation (Internal Intermediate
Representation, IIR) of AIRE has five layers of
hierarchy. Its file counterpart (File Intermediate
Representation, FIR) stores the compiled model in
the FIR files.

3.1. AIREICE Structure

AIRE is an.object-oriented intermediate format
with five layers of hierarchy, which is shown in
figure 2. In AIRE, the collectioh of objects represents
a very generalized abstract syntax tree (AST), while
methods associated with the classes (and thus
objects) represent an integrated application
programming interface (API). AIRE consjsts of two

[IR |

Extensions]
| I | 1
[Predefined Derived Class Layer 2]
1 |
l Extensions J
1 |
Predefined Derived Class Layer 3 I
i | |
I Extensions I

1
rPrede/ined Derived Class Layer 4 J
1

l Extensions l

I Predefined Derived Class Layer 5 J
- .
v

Application
(e.g. code generator)

Application
(e.g. optimizer)

Figure 2. AIRE Hierarchy

278

lIE=I ‘
I E The 12" International Conference on Microelectronics

Tehran, Oct. 31- Nov. 2,2000

parts:

e IR is memory representation of design
information

e FIRis the IR data, saved in file

AIRE can be implemented by any object-

oriented language, while its primary design is based
on C++.

Generally speaking, AIRE classes can be divided

into two categories:

» “Classes which " are in one-to-one
correspondence with language constructs
such as conditional statements, expressions,
and signals.

» Classes which hold a collection of the above
category elements, such as a list of
statements in a block.

3.2. AIRE Extension Layers

As shown in figure 2, every predefined layer has
an extension layer. AIRE users only employ
predefined AIRE classes, whereas extra functionality
can be added by extension classes. So all the AIRE
users work with a uniform structure and interface.
Each application adds the needed functionality to the
AIRE structure by extension classes.

For example a simulator application adds
simulation-specific methods to its extension classes,
and all the AIRE classes inherit the simulation
capability.

4. AIRE problems and solutions

Although AIRE is good enough to be considered
as a major candidate for CAD tools integration, There
are some obstacles that makes the standardization
process difficult. In this section we address some of
these weaknesses and our solutions to them.

4.1. Documentation

To ease the use of IF by different CAD tools,
each of them should clearly know the exact structure
of data, represented by the IF. So a good
documentation on data structure and exact mapping
from language (source) to IF (target) is a necessity.
The current version of AIRE does not have such
documentation. Throughout our implementation we
gradually gathered the essential information and it
would be soon available electronically.

4.2. Memory Management

If AIRE is to be used as the connection node
between different applications, besides knowing its
structure, it should be possible to consider it as a
robust black box To have a good memory
management, and thus robustness, there should be a

279

uniform mechanism to create and destroy objects. In
AIRE, there are two kinds of objects: canonical
objects that have only one instance in the memory
and many references. A technique based on
reference-count is used for them. On the other hand,
there are non-canonical ordinary objects that are
handled by operators like “new” and “delete”. There
are many examples in AIRE that some parameters
can be of either type. Choosing the proper
destruction technique by keeping track of creation
method is impractical. We expanded the technique
used for canonical objects (reference-count based) in
a way that it covers all types of objects. In this way,
every application can make any number of references
to any object; without worrying about other
application’ s references to that object.

4.3. Portability

Portability is in fact the most important property
for an IF in order to be used for integration because
different CAD tools interact through files. These
files must be portable even between different
implementations of the IF. In this way, the very first
thing to know is the filing structure and how to save
and find needed information.

4.3.1. Filing Structure

What should be stored in a single file, how
objects in files address each other and how files are
configured to present a complete design, are not
mentioned in the current version of AIRE. We
designed and developed a complete new FIR. This
design is based on general concepts of HDLs. In the
FIR, a single file includes only the objects of a single
library unit (or module in Verilog). A library is a
single file that includes the names of library units of
that library.

4.3.2. Addressing Techniques

Object addressing in a single file is not as critical
in portability as object addressing between files
because the former is transferred with the files but the
latter is not. In the next two sections, the two
addressing techniques that are used in FIR files are
presented.

4.3.2.1.LOR

Local Object Referencing (LOR), object
addressing in a single file, is done using IDs in the
file. Every object has an ID, which is unique in that
file. Other objects of this file use this ID to refer to
the object. (Figure 3)

b4
% N4

o : - o .) - - - . N ’ B BT ’
KEE The 12" International Conference on Microelectronics . Tehran, Oct. 31- Nov. 2,2000

{1
kind = IR_ENTITY_DECLARATION

idemntifier = [2]

21 '
kind = IR_IDENTIFIER

text = "Mux2x1"
length =6

Figure 3. LOR Example

4.3.2.2. GOR

Every design uses other libraries and packages
(like the standard package) and hence, there are
objects referring other objects in other files. The
transfered file must not contain the information of
referred file. For example, standard package must
not be transferred with other files.

Full names of objects, equivalent to PATH in
VHDL, are the basis of the addressing technique,
developed for this purpose. Every object referring to
another one uses the full name of that object and its
file version to refer to it. This is called Global Object
Referencing (GOR). For Example consider a desig
referring to type “bit” in standard package. As it is
- using the name, it can use any standard package in
which this name exists. Figure 4 shows another
example. An entity declararion hasa pointer to its last
analyzed architecture. The full name shows that this
architecture is in the “work” library and its name is
“behavioral”. This GOR also shows that if the
version of FIR file of the architecture is more than
“17, the current file is invalid and should be compiled
again.

(11
kind = IR_ENTITY_DECLARATION
last_analyzed_architecture = {1;[work.behavioral(test)]}

Figure 4. GOR Example

4.3.3. File Formats

Currently the new version of FIR supports two
file formats: binary formtat and text format. Text
format is usefull for debuging and academic usages,
while binary format is more compact and secure.

In this design, Classes in the AIRE have a fixed
interface with physical file handling objects.
Different implementaions of these objects provid
more supported file formats.

280

5. Conclusion and Future Work

In spite of its shortcomings, AIRE is an
intermediate format with a detailed document that is
publicly available. There is a limited informal
support for this IF, which in many ways is better than
that” of other intermediate formats. : The object-
oriented design of AIRE is a significant feature of
this IF that is compatible with modern programming
styles. A standard intermediate format is essential for
today’s design environments. AIRE has come a long
way towards achieving this goal and we tried to make
some more steps toward it.

More new file formats can be added to the .
support set of AIRE. Security issues and intellectual
property are also left open in this IF. These areas are
perhaps the last challenging steps to finalize the
standardization process.

References

1. AIRE document Version 4.6 at
http//www.eda.org/aire/

2. J.C. Willis, G.D. Peterson, S.L. Gregor, “The
Advanced Intermediate Representation with
Extensibility / Common Environment
(AIRE/CE) “, IEEE Transaction on Computer,
1998. : .

3. VIFASG 1076 VHDL Procedural Interface and
Schema Definition. 1990, Draft version
developed by VIFASG.

4. Implementor’ s Guide for LEDA VHDL System.
1993, Available only from Leda S.A. Meylan,
France.

5. M. H. Reshadi, A. M. Gharehbaghi, Z. Navabi,
“Intermediate Format Standardization:
Ambiguities, Deficiencies, Portability Issues,
Documentation and Improvements” , HDLCON,
March 2000.

6. M. H. Reshadi, A. M. Gharehbaghi, “VHDL
Intermediate Formdt Representation”, CAD Lab.
Report 23, University of Tehran, August 1999.2

7. S. GhiasiHafezi, M. H. Reshadi, “ FIR: Structure
and Implementation Report”, CAD Lab. Report
27, University of Tehran, November 1999.3

2 Documentation will be made available electronically.
The same as 2. .

