HDML: Compiled VHDL in XML

Mohammad Hossein Reshadi, Bita Gorji-Ara, and “Zainalabedin Navabi

University of Tehran .
Electrical and Computer Engineering Department
14399 Tehran, IRAN
Phone: 98-21-800-9215; Fax 98-21-877-8690
reshadi@cad.ece.ut.ac.ir, bita@cad.ece.ut.ac.ir

"Northeastern University
Electrical and Computer Engineering Department

Boston, Massachusetts 02115
Phone: 617-373-3034; 617-373-8970
navabi@ece.neu.edu

Abstract

Communication between designers and tools is a
necessity and plays a significant role in productivity and
time to market. XML, as an emerging standard, has
proved to be a very suitable format for exchanging data
on network and between applications. In addition, there
are many public-domain tools for manipulating data in
XML format regardless of what that data represents.
HDML (Hardware Description Markup Language) is a
new model for representing compiled data from original
VHDL code in XML format. In addition to benefiting
from XML advantages, HDML also develops a powerful
mechanism for rule checking on a compiled design
model. Although, the model does not depend on a
specific data structure, we have used a revised version of
AIRE/CE' for developing an analyzer for converting
VHDL to HDML. To illustrate the capabilities of
HDML, this paper discusses an example application of
our XML based intermediate format, which is typical of
many other potential applications. This specific
application checks syntax and semantics of an input
VHDL code for synthesis and we will refer to is as
synthesizability rule checker. Key words: VHDL, XML,
hardware, CAD tool, system design, rule checking, DTD,
XSL, AIRE/CE.

1. Introduction

Facing the increasing need for more and more complex
systems and to win quality and time to market
competition, companies and designers demand faster and

! Advanced Intermediate Representation with
Extensibility/Common Environment

0-7695-0890-1/00 $10.00 © 2000 IEEE

69

better CAD tools. This requires design partitioning and
consequently converging designs that are done on
different platforms by different designers using different
tools.

Combining design components into a complete design
requires people involved to communicate and exchange
data and results. The critical part of this communication
is a standard intermediate format in which design data are
represented.

The efforts for designing an intermediate format for
HDLs have a history as long as the HDLs themselves.
AIRE/CE [1, 2] was the last partially successful one but
its weaknesses in portability and documentation [3]
prevented it from becoming a usable standard.

The first XML standard was released in 1998 and since
then XML has been widely used in many different areas.
Some of XML advantages that made it so public are:

e The standard is based on SGML, a very powerful and
well-structured language.

e Although it is intended for machine readability and
processing, its structure is also human readable and
can easily be analyzed. This in fact means that the
data represented in XML are also documented by this
structure.

e XML files are text files and therefore it is quite
portable and readable by different platforms.

e There are many public domain tools available for
XML. Therefore it is not necessary to develop tools
for reading well-formed XML files or for checking
the validity based on DTD and making
transformation by using XSL.

These and many other advantages of XML have made it
an ideal basis for data storage and communication.

In contrast to XML, the VHDL grammar is very
complex and hard to process. By compiling VHDL and

storing the results in an XML file, one can easily process
the design data without being concerned with language
processing problems. The final goal in this way is to have
a standard tagging with which the design can be
represented. Before this can be done, we need to know
what properties the structure should have.

HDML introduces a general model to present every
object oriented data structure in XML format so that some
important needs of hardware designers and CAD tool
designers will be satisfied regardless of what data
structure is used.

In this article, we first discuss the model and its
advantages (Section 2). In Section 3, we discuss a sample
data structure to represent VHDL in XML. In section 4,
we explain a sample application of this model and in
Section 5 we will address the limitations of the model and
make suggestions for improvements.

2. General Model

2.1. Model Outline

Every object oriented data structure has four important
properties: the hierarchy, names of classes, names of
parameters in every class, and set of classes that can be
instantiated. Three name spaces in HDML represent the
last three properties and the hierarchy is implemented by
the order in which these name spaces are used. The name
spaces are:

e obj: concatenation of “obj” and the type name of the
class that is instantiated represents an object in the
memory and the class from which it is instantiated.

‘class A
{
int iA, iID;
Kind kK;
A(Kind k) { KK=Kk; };

b
class B : public A
{

char cB;

B(Kind k) : A(k) {};

}’

class C: public B

t .

float fC;

C(Kindk):B (C_Kind) {};
b

Cx
Xx.1A=10;x.cB="a’;x.fC=048;

Figure 1- sample C++ code

70

<obj:C-Kind>
<cls:A>
< p:iA type="int">10</p:A>
</cis:A>
<cls:B>
< p:cB type="char">a</p:cB>
</cls:B>
<cls:C> . .
< p:fC type="float”>0.48</p:fC>
</cls:C>
</obj:C-Kind>

Figure 2-HDML of Figure 1

e cls: “cls” appears before the actual names of
classes. This tag encloses the parameter of a
specified class.

e p: this shows the name of a parameter in a class.

An example based on example C++ code of Figure 1
illustrates these issues further. As shown in this figure
there is a hierarchy of three classes and an object
instantiates from class C. As shown in Figure 2 <obj:C-
KIND> illustrates that an object of class C type is being
presented. This tag contains three “cls” tags
corresponding to the three classes in the hierarchy. Note
that the name of last class (cls:C) is equivalent to the type
name GKIND. Each class tag contains a list of “p” tags
corresponding to the class parameters. The “type”
attribute of “p” tags shows the type of information that
the parameter holds. It is clear that parameter’s access
type; i.e. “public”, “protected” and “private”, does not
provide any useful information and is not saved in
HDML.

2.2. Advantages of HDML

2.2.1. Extensibility. HDML is extensible from two
points of view. First, it can represent any kind of object
oriented data structure. Second, if a data structure is
extended by adding some classes in the hierarchy, it can
still be represented in HDML. The former implies that
even if a standard data structure is used for other
languages such as Verilog, HDML can still be useful.

2.2.2. Ease of applying rules. Consider that class D
inherits from B (Figure 3). An object of this type
contains information of classes A, B and D. In this way,
if we are going to apply rules to all classes of type B, i.e.
C and D, we can just apply that rule to <cls:B> and hence
the rule will be applied to all objects containing this tag.
This is in fact the concept of inheritance in rules.

2.2.3. Utilizing XML free tools. HDML is still an XML
file and therefore every tool working on XML files can

also be used for HDML. Particularly XSL processor and
DTD checkers can still be used widely and easily.

<obj:D-kIND>
+<cls:A>
e
+<cls:D>
</obj:D-KIND>

Class C Class D

Figure 3- ease of applying rules

2.24. Extractable data structure. It is clear that data
structure in Figure 1 can easily and automatically be
extracted from information in Figure 2.

2.2.5. Compiled code. HXML [4] is another attempt for
using XML for design representation, but it is merely a
reformatting of VHDL source code. It requires some
processing for example to understand which similarly
named signals are referring to the same declaration. In
addition, a large amount of type checking is necessary in
HXML to realize which overloading function is actually
used. On the other hand, HDML relies on the results of
VHDL compilation that is also useful for extensions and
algorithms. This means that despite knowing the relations,
for example, one can add a security extension to the
classes and store security information (like code/decode
keys).

2.2.6. Representing complete designs. MoML [5] is
another attempt in utilizing XML for representing
designs. MoML describes a netlist of components and
blocks independent of their function. On the other hand,
HDML can represent all parts of an HDL. Therefore, not
only the graph of components but also their functionality
can be stored in the HDML model.

3. VHDL / XML structures and utilities

In this section we first describe basic concepts of
utilizing XML and then will explain data structure used
for HDML.

3.1. Xpath [7, 11]

XPath is a search language for addressing specific
elements in an XML file. The XPath data model views a
document as a tree of nodes. XPath leans heavily on
familiar description of a document and uses genealogical
taxonomy to describe the hierarchical makeup of an XML
document. It refers to children, descendents, parents and

ancestors. Of course the first ancestor is called root.
Figure 4 shows a simple XML example and its
corresponding tree.

<?xml version="1.0"7>
<class>
<param type="int">4</param>
<param type="char” size="1">a</param>

</class>
®)
R =root 9
E =Element
A = Attrib
T= Te;ttn ue e G

Figure 4- Familial Tree of an XML code

In XPath the fist “/” selects the root and stepping down
the tree is done using element names. For example
“/class/param” selects the param element whose parent is
class. Symbols “@?”, ”*”, and “.” select attributes, all
and current element(s) respectively. A very important
part of XPath is its predicates, which is useful in
conditional selection of tree nodes. These predicates are
XPath expressions enclosed in brackets ([]). For
example /class/*[@type="int"] selects every child of
class that its type attribute’s value is int. Also
/class/param [2] selects the second param of every class
child of the root. Predicates are also cascadable, for
example /class/param[2] [@size] selects second param
children of any class that the selected param element has
an attribute named size.

3.1.1. XSL (Extensible Style sheet Language) [8,11]

XSL is one of the very powerful tools that operates on
XML and that uses XPath expressions for selecting
elements and applying rules. It suffices here to show a
very simple example in XSL showing the value of any
param child whose parent name is class and whose type
attribute is char:

<xsl:template match="/class/param[@type="char]>
<xsl:value-of select = *."/>
</xsk:template>

71

We can use XSL and XPath to find structure of an
XML file and produce messages or apply rules.

3.2. Programming APIs

Every XML structure must be processed using a
program. The W3C (Word Wide Web Consortium) that
supports XML and related standards has provided a
standard APl for XML programmers. This helps the
programmers to use any implementation of this API for
loading and saving XML files. This API is called DOM
(Document Object Model) and provides a library of
functions and classes to create and acess XML data
structures in the memory. Compared to XPath and XSL,
it is more flexible but requires more programming efforts.
Figure 5 shows how to select //param[2], i.e., every
second param child in a document, using DOM.

nodes=doc->GetElementByTagName(“param™);
if (nodes->Item[1])

lldo whatever

Figure 5- DOM finding 2" param

3.3. DTD (Document Type Definition)

If an XML file follows all XML rules, DTD defines
extra rules to limit the file to a very particular structure.
A valid XML file is one that is well formed and follows
the rules of a DTD. Here is a simple example:

<!ELEMENT class(param *)>

<!ELEMENT param (#PCDATA)>

<!ATTLIST param type (char | int| float) #REQUIRED
size CDATA #IMPLIED>

In this example a class element can have every number
of param clements. A param element can contain only
text, must have a type attribute and may have size
attribute. The type attribute can be char, int or float and
the size attribute value may be anything. If a data
structure is to be used for representing designs in HDML
then a corresponding DTD can be designed to exactly
show the structure. By changing such a DTD, one can
expand or limit the structure.

3.4. Proposed data structure

The previous sections described basis upon which
HDML is defined. The data structure used for storing
compilation results will be discussed here. Our first
candidate for this purpose was AIRE/CE, but it proved to
suffer from certain deficiencies and weaknesses [3]. We
have developed our revised version in which the problems
are solved and some new properties are added. These
changes are extensive and we will only highlight some of
the key issues here. Our format is similar to AIRE/CE in

72

which there are five layers of hierarchy and 11 categories
of classes {1, 2].

[architecture)

process]

Statement_part statement_part,

if]

hen_statements

(assignment [

karget

Figure 6- relation of objects in AIRE/CE

To use Xpath expressions we must know the relations
in the data structure. Figure 6 shows a simple example of
the relations in the data structure.

Objects pointed by others in the memory are contained
by the representation of pointing object in the HDML.
When an object is pointed by two other objects, two
strategies are possible: one is to repeat the object in every
pointing object’s parameter scope in the HDML, the other
is to use an ID for every object and use that ID to point to
the object. The strategy used depends on the way objects
are handled in the data structure but it does not affect the
HDML properties.

4. A sample application

The examples given in this section are synthesis
oriented and show how we can apply rules to HDML.

4.1. Time expression in waveforms

AIRE/CE stores waveforms in IIR_WaveformElement
with two parameters: value and time. In the synthesis
subset the time expression is ignored. Using XSL and
DOM, we show how to find waveforms with a time
expression.

Figure 7 shows the VHDL code of a simple assignment
and its representation in HDML. It is not necessary in
HDML to follow path to waveforms to check their time
expression. It is enough to find every
cls:WaveformElement tag and check it regardless of the
class that contains it; i.e, conditional waveforms,
sequential assignments, ...

Using an XSL processor, warning messages can be
generated when the following expression returns a non-
null value:

I cls:WaveformElement[p:time[*]]

This Xpath expression will select all waveform elements
that their p:time child has at least one child. Figure 8
shows the equivalent DOM pseudo code.

architecture tl of testis
begin

s <= ‘0’ after 10ns;
end;

@)

<obj:ARCHITECTURE>

<cls: ArchitectureDeclaration>
<p:statement_part>

<obj:SIGNAL_ASSIGNMENT>

<p:waveforms>
<cls:WaveformElement>
<p:value>...</p:value>
<p:time>...</p:time>
</cls:WaveformElement>
</p:waveforms>

</obj:SIGNAL_ASSIGNMENT>
</p:statement_part>
</cls:architecture_decl>

</obj:ARCHITECTURE> ®)

Figure 7- VHDL (a) and HDML (b) sample

nodes=doc->GetElementByTagName(“cls: WaveformElement”);
current = nodes->Item[0];
while (current != NULL){
pTime = current-> GetElementByTagName(“p:time”);
if (pTime->hasChildNodes())
printf(* wanrning: waveform with time expression”);
current = nodes-> nextMatchingElemtA fter(current);

}

Figure 8- DOM code to find time expressions

4.2. Checking synthesizable subset

Synthesizable subset of VHDL differs from full VHDL
both in syntax and in semantics. Syntactical exclusions,
like Block and guard, can be checked via XSL and DTD.
A DTD can be defined if the data structure is fixed in
HDML. By removing some parts of DTD it will be
possible to check syntactical exclusions.

In this paper we focus on XSL based methods and
semantic checks. Almost all synthesizablity rules can be
expressed with Xpath expressions. The complexity of
these expressions depends on the rule and the data
structure.

For example, consider he rule of clocks in process
statements. A process is stored as in Figure 9. To be
synthesizable, If statements that have a 'EVENT in their
condition must have no else part. Also process
statements must contain only one wait statement [6].

<obj: PROCESS>

+<cls:Statement>
+<cls:ConcurrentStatement>
<cls:ProcessStatement>)
<p:statement_part> ... </p:statement_part>
</cls:ProcessStatement>

</obj: PROCESS>

Figure 9- Process Statement

A process object that has more than one wait statement
object in its statement_part is not synthesizable. Such a
process is selected by the following Xpath expression:

obj: PROCESS_STATEMENT
[cls:ProcessStatement//obj:WAIT_STATEMENT{2]}

This expression finds all processes that their
cls:ProcessStatement child has more than one
obj:WAIT_STATEMENT in its successors. Figure 10

shows the equivalent DOM code.

nodes=doc->GetElementByTagName(*“obj:PROCESS”);
current = nodes->Item[0];

while (current = NULL){

if (current->

GetElementByTagName(“obj: WAIT_STATEMENT)~> Item[1]
)

printf(“ error: 2 wait in a process”);
current = nodes-> nextMatchingElemtA fter(current);

}

Figure 10- DOM finding 2™ wait in process

Figure 11 shows the structure of an if statement. The
following Xpath expression finds all if statements that
have a ‘EVENT in their condition part and also their else
part is not empty.

obj: IF_STATEMENT [// p:condition //
obj:EVENT_ATTRIBUTE][//p:els e_sequence//p: element]

73

Figure 12 shows the equivalent DOM code.

<obj:IF_STATEMENT>

+<cls:Statement>
+<cls:SequentialStatement>
<cls:IfStatement>

<p:condition> ... </p:condition >
<p:else_sequence >
<obj:SEQUENTIAL_STATEMENT_LIST>
<p:element>... </p:element>
<p:element>... </p:element>
</obj:SEQUENTIAL_STATEMENT_LIST>
</obj:IF_STATEMENT>

Figure 11- If Statement

nodes=doc-> GetElementByTagName(“obj:IF_STATEMENT");
current = nodes->Item[0];
while (current = NULL){
if (current-> GetElementByTagName(“p:condition”))->
GetElementByTagName(“obj:EVENT_ATTRIBUTE"))
if (current-> GetElementByTagName(“p:else_sequence”))->
GetElementByTagName(“p:element”))

printf(* error: bad clocked if”’);

current = nodes-> nextMatchingElemtAfter(current);

}

Figure 12- DOM finding clocked if with else part

5. Limitations and suggestions

Large file size and slow processing algorithms are two
inherent weaknesses of text files, and hence XML files
and special techniques must be used for solving them.

For example our experiences showed that removing tab
and new line characters reduced the file size to less than a
half of the original size. Also using short tags for objects,
classes and parameter names can have similar affects.
Standard techniques of compression are also applicable.

Processor execution speed is not only dependent on file
size but also on the organization of the data in the file.
This is more important when DOM solutions are
considered and a large number of accesses are done to
different parts of design.

6. Conclusion and future work

Communication between parties and tools is vital for
today’s design needs. XML, has proved its capabilities
on the web and in the ecommercee. HDML is a
representation for description of hardware in XML
format. Using HDML strategy and tools and libraries like

74

XSL processors and DOM, one can utilize the whole
power of object oriented programming in hardware.

Our HDML definition does not include a data structure
but uses one. We have used our fully implemented
intermediate representation format for this purpose.

7. References

[1]- AIRE v.4.6 document (http://www.eda. org/aire/)

[2]- J.C. Willis, G.D. Peterson, S.L. Gregor, “The advanced
Intermediate Representation with Extensibility / Common
Environment (AIRE/CE) “, IEEE Transaction on Computer,
1998.

{3]- M.H. Reshadi, A.M.Gharehbaghi, Z.Navabi,
“Intermediate Format Standardization: Ambiguities,
Deficiencies, Portability issues, Documentation and
Improvements”, HDLCon 2000, March 2000.

[4]- A. Zamfirescu, Z. Zhao, “HXML, A new approach to
managing hardware information”, VIUF, 1999.

[5]- E.A. Lee, S. Neuendorffer, “MoML, A Modeling Markup
Language in XML-Version 4.0”, ICCAD, March 14, 2000.

[6]- IEEE P1076.6/D1.12 Draft Standard for VHDL Register
Transfer Level Synthesis, The Institute of Electrical and
Electronic Engineers, New York, NY 10017, USA.

[7]- C.F. Goldfarb, P. Prescod, The XML Handbook, ch. 59,
second edition, Prentice Hall, 2000.

[8]- C.F. Goldfarb, P. Prescod, The XML Handbook, ch. 60,
second edition, Prentice Hall, 2000.

[9]- C.F. Goldfarb, P. Prescod, The XML Handbook, ch. 2,
second edition, Prentice Hall, 2000.

[10]- C.F. Goldfarb, P. Prescod, The XML Handbook, ch. 54,
second edition, Prentice Hall, 2000.

[11]- E.R. Harold, XML Bible, 1999,

XSL(http://metalab unc.edu/xmi/books/bible/14 html),
XPointer(http://metalab.unc.edu/xml/books/bible/1 7. html).

[12]}- XSL Transformations (XSLT) version 1.0,
(http://www.w3.org/TR/XSLT)

