Merged Dictionary Code Compression
for FPGA Implementation of Custom
Microcoded PEs

BITA GORJIARA, MEHRDAD RESHADI, and DANIEL GAJSKI
University of California, Irvine

Horizontal Microcoded Architecture (HMA) is a paradigm for designing programmable high-
performance processing elements (PEs). However, it suffers from large code size, which can be
addressed by compression. In this article, we study the code size of one of the new HMA-based
technologies called No-Instruction-Set Computer (NISC). We show that NISC code size can be sev-
eral times larger than a typical RISC processor, and we propose several low-overhead dictionary-
based code compression techniques to reduce its code size. Our compression algorithm leverages
the knowledge of “don’t care” values in the control words and can reduce the code size by 3.3 times,
on average. Despite such good results, as shown in this article, these compression techniques lead
to poor FPGA implementations because they require many on-chip RAMs. To address this issue,
we introduce an FPGA-aware dictionary-based technique that uses the dual-port feature of on-chip
RAMs to reduce the number of utilized block RAMs by half. Additionally, we propose cascading
two-levels of dictionaries for code size and block RAM reduction of large programs. For an MP3
application, a merged, cascaded, three-dictionary implementation reduces the number of utilized
block RAMs by 4.3 times (76%) compared to a NISC without compression. This corresponds to
20% additional savings over the best single level dictionary-based compression.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]
Microprocessor/microcomputer applications

General Terms: Algorithms, Design, Performance, Experimentation

Additional Key Words and Phrases: Microcoded architectures, no-instruction-set computer, mem-
ory optimization, dictionary based compression, FPGA

ACM Reference Format:

Gorjiara, B., Reshadi, M., and Gajski, D. 2008. Merged dictionary code compression for FPGA
implementation of custom microcoded PEs. ACM Trans. Reconfig. Techn. Syst. 1, 2, Article 11
(June 2008), 21 pages. DOI = 10.1145/1371579.1371583. http://doi.acm.org/10.1145/1371579.
1371583.

Authors’ address: Center for Embedded Computer Systems, University of California at Irvine;
email: {gorjiara, reshadi, gajski}@cecs.uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a dis-
play along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works re-
quires prior specific permission and/or a fee. Permission may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or
permissions@acm.org.

(© 2008 ACM 1936-7406/2008/06-ART11 $5.00 DOI: 10.1145/1371579.1371583. http://doi.acm.org/
10.1145/1371579.1371583.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.

11



11: 2 . B. Gorjiara et al.

1. INTRODUCTION

Shrinking time-to-market and high demand for productivity has driven tra-
ditional hardware designers to use design methodologies that start from
high-level languages. However, meeting design constraints of automatically
generated Processing Elements (PEs) is often a challenging and time-
consuming task for designers. Moreover, slight changes in the high-level spec-
ification require rerunning the behavioral synthesis tools, producing a new
datapath, and redoing the physical design process. To avoid repeating tim-
ing closure and physical synthesis phases, a new generation of custom-PE de-
sign technology that is capable of both generating custom datapaths as well as
reprogramming existing ones (without further modifications) is developed. In
these technologies, first a custom datapath is generated for an application,
and then the datapath is synthesized and laid out properly to meet timing and
physical constraints. The final step is to compile the program on the generated
datapath. If the application is changed after synthesis, it is simply recompiled
on the existing datapath. This feature significantly improves the productivity
of the designer by preventing repetition of physical synthesis phase. Exam-
ples of such technology include ARM OptimoDE, No-Instruction-Set Computer
(NISC) [Reshadi and Gajski 2005; Reshadi et al. 2005], and TIPI [Weber and
Keutzer 2005]. These techniques are targeted for statically scheduled Hori-
zontal Microcoded Architectures (HMA) [Agrawala and Rauscher 1976].

A microcode is a set of bits that controls the units of datapath for one cy-
cle. In statically scheduled HMAs, the compiler compiles the program directly
to microcode without using instruction abstraction. HMAs can potentially
have better performance, lower power, and lower area than conventional
instruction-based processors. This is due to giving the compiler more fine-
grained control over the datapath, and hence utilizing datapath resources
more efficiently. As a result, highly parallel architectures can be designed
as HMA without any concern about the complexity of the controller, hardware
scheduler, and instruction decoder. Despite all these benefits, HMAs suffer
from “code bloating.”

This article studies FPGA-implementation of soft-core HMA-based PEs. We
compare the code size of a new HMA-based design methodology, called NISC,
with that of traditional RISC processors. We observed that although NISC PEs
outperform typical RISC processors by five times on average, their code sizes
are about four times larger than those of RISC. In this article, we propose sev-
eral low-overhead dictionary-based code compression techniques to reduce the
code size. Our compression algorithm leverages the knowledge of “don’t care”
values in the control words to improve the compression efficiency and can re-
duce the code size by 3.3 times, on average. Despite such good results, as shown
in this article, these compression techniques lead to poor FPGA implementa-
tions because they require many on-chip RAMs. To overcome this limitation,
we propose to merge every two dictionaries into a single dual-port memory
unit on FPGAs. Using this approach, the block RAM utilization is improved
by 46%. Also, for large applications, we propose using cascaded dictionaries,
where multi-levels of dictionaries are used to decompress the code. For MP3

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



Code Compression for FPGA Implementation of Microcoded PEs . 11: 3

@ v v
. RTL
Compller@eenerator

Fig. 1. Flow of our toolset.

application, a merged, cascaded, three-dictionary implementation reduces the
number of utilized block RAMs by 4.3 times (76%) compared to a NISC without
compression. This corresponds to 20% additional savings compared to the best
single-level dictionary-based compression.

This article is organized as follows: Section 2 presents an overview of NISC
Technology. Section 3 presents a motivating example to emphasize the need
for code-size reduction techniques in HMAs. Section 4 is an overview of ex-
isting code-size reduction techniques. Section 5 discusses our multi-dictionary
compression approach, its effectiveness in terms of compression ratio, and its
limitation in terms of number of utilized block RAMs. Section 6 introduces
our FPGA-aware compression technique that can significantly improve block
RAM utilization in FPGAs. Section 7 proposes cascading two-level of dictionar-
ies for code optimization of large program. Section 8 discusses the worst-case
performance penalty of decompression. Finally, Section 9 concludes the article.

2. OVERVIEW OF NISC TECHNOLOGY

In the NISC design flow [Reshadi et al. 2005; Gorjiara et al. 2006], a custom
architecture is generated or selected for a given application and then, the pro-
gram is compiled on the architecture to generate low-level microcodes that we
call control words (CW). Finally, the HDL code of the NISC is generated in
register-transfer level (RTL) according to the architecture description and the
output control words [Gorjiara et al. 2006]. Our toolset (Figure 1) is avail-
able online at http:/www.cecs.uci.edu/~nisc, where users can specify a new
NISC architecture using our Architecture Description Language (ADL) called
Generic Netlist Representation (GNR) [Gorjiara et al. 2006] and compile their
application on it. Also, automatic tools can be used to generate NISC archi-
tectures customized for one or more applications [Gorjiara and Gajski 2008;
Gorjiara 2007; Trajkovic et al. 2006]. NISC customization can be done in three
ways: (1) by changing number and type of components and their intercon-
nectivity; [Gorjiara and Gajski 2008] (2) by adding custom functional units
(ranging from simple bitwise operations to complex multi-operand operations);
[Reshadi et al. 2008] (3) by adding one or more external accelerators [Reshadi
and Gajski 2007; Reshadi 2007], which may be custom NISCs themselves. The
difference between (2) and (3) is that in (2) compiler schedules the communi-
cation between the custom unit and the rest of the datapath, while in (3) the
software should explicitly define the communication. Customization can sig-
nificantly improve performance and code size of a design [Gorjiara 2007], but
it is out of scope of this article. In this article, we focus only on compression-
based code size reduction techniques.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



11: 4 . B. Gorjiara et al.

Datapath AF

o

AG

Controllel

I
Comp,

Fig. 2. Block diagram of GNISC architecture.

I RF _ra0 I RF ral I RF_wa I RF_we IALU_op IMuxO_sellMuxl_sell RO_loadl I Constant

Fig. 3. Fields of a control word.

Figure 2 shows an example of a NISC PE, which consists of a datapath and
a controller. The datapath contains functional units, register file, registers,
multiplexers, and memory. This datapath is general enough to run many ap-
plications; therefore, we call it General NISC (GNISC). Our approach relies
on a sophisticated compiler [Reshadi 2007] to compile a program described
in a high-level language to control words that directly drive the control sig-
nals of components in the datapath. The CWs are stored in a control memory
(CMem) in programmable PEs, or they are synthesized to lookup-table logic in
hardwired dedicated PEs. Figure 3 shows the fields of a sample control word.
Corresponding to each control signal of each component in the datapath, a field
is added to the control words. Also, one or more constant fields are added to
store constants in the program. Our compiler generates “0,” “1,” or “don’t care”
values for the bits of the control words. A “don’t care” value (denoted by “X”)
indicates that the corresponding unit is idle at a given cycle and its control
signal can be assigned to “0” or “1” without affecting program behavior.

Compared to traditional RISC processors, NISC architecture does not have
an instruction decode stage. Also, the operations are statically scheduled;
hence, it does not have a hardware scheduler. As a result, highly parallel
architectures can be designed using NISC without any concern about the com-
plexity of instruction decoder and hardware scheduler.

Similar to NISC, VLIW/EPIC processors [Rau et al. 1989; Codwell et al.
1987] are also statically scheduled. However, they have several differences:

(1) VLIWSs have instruction decoders because they still have the concept of in-
structions. In fact their decoders are larger than those of RISC processors
because they should decode several RISC instructions simultaneously. For
example, in TT TMS320C62xx (a modern VLIW architecture), the instruc-
tion decoder consists of two pipeline stages. In contrast, NISC does not
need any instruction decode stage.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



Code Compression for FPGA Implementation of Microcoded PEs . 11: 5

Table I. Area and Clock Frequency of MicroBlaze and GNISC

Processors Clock freq.(MHz) # 4-input LUTs
MicroBlaze 105 1581
GNISC 100 1576

(2) Adding a new unit to VLIW requires adding a slot to its wide instructions
(each slot is equivalent of a RISC instruction). Also the decoder unit must
be extended accordingly. However, in NISC, for each new unit, only one or
a few control fields are added to the control word. Therefore, more units
can be added to the datapath at little cost.

(3) Resource sharing can be implemented more efficiently in NISC than
VLIWS, because NISC compiler has low-level control over elements of the
datapath. For example, instead of adding two constant fields to the con-
trol word of GNISC architecture in Figure 2, one constant field and an
assistant register is added. If in a given cycle, two constants are needed in
the datapath, the compiler can schedule one of the constants a few cycles
earlier and transfer it to the assistant register for future use. Similarly,
assistant registers are added at the output of register file to reduce the
number of required register-file read ports. Such optimizations are to some
extend similar to renaming and reservation stations in superscalar proces-
sors; but in NISC, they are done at compile-time and do not impose any
hardware overhead. In contrast, these optimizations are very challenging
in VLIWs because many low-level instructions must be designed for trans-
ferring data to the internal registers.

Despite their differences, both NISC and VLIWSs have code size issue. The code
size reduction techniques proposed for VLIW processors are applicable to NISC
as well. Before discussing these techniques, we first present a motivational
example that compares the quality and code size of a NISC architecture with
those of an instruction-based processor. Since we did not have access to toolset
and HDL description of a VLIW processor, we compared NISC to a well-known
RISC processor.

3. MOTIVATIONAL EXAMPLE

In this section, we compare the performance and code size of the GNISC with a
similar-size RISC processor. Since our toolset generates synthesizable code for
Xilinx FPGAs, we choose the Xilinx MicroBlaze for comparing an instruction-
based processor with a microcoded one. We synthesized both processors on a
Xilinx Virtex4 (90nm) FPGA package using ISE 8.2. We configured MicroBlaze
to have an integer multiplier and a divider (no barrel shifter, no floating point
unit). Table I shows the area (in terms of 4-input LUTs) and clock frequency of
the processors. Both processors run at about 100MHz, and occupy nearly the
same number of 4-input LUTs.

We compiled and simulated a set of benchmarks including dijkstra, sha,
adpcm _coder, adpcm_decoder and CRC32 from MiBench (the free version of
EEMBC embedded benchmarks at http://www.eecs.umich.edu/mibench), and a
fixed-point Mp3 decoder (more than 10,000 lines of C code). For all benchmark,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



11: 6 . B. Gorjiara et al.

Table II. Comparing GNISC with MicroBlaze

GNISC
MicroBlaze GNISC MicroBlaze
code size code size speedup |code size
Benchmarks fcycles KB | #BRAM| #cycles KB #BRAM (x) ratio
adpcm_coder 256748693 1.956 1 74321930 6.960 4 3.45 5.10
adpcm_decoder 322766405 1.364 1 63082673 5.075 3 5.12 2.59
CRC32 209436647 1.264 1 21901993 2.567 3 9.56 2.03
dijkstra 25927532 1.928 1 9764682 9.614 6 2.66 4.99
sha 183030479 3.156 2 19282976 14.123 11 9.49 4.47
Mp3 2668445 44.62 21 897452 216.659 117 2.97 4.86
Average 5.54 4.01

we have removed file I/O and printf calls to make the code suitable for FPGAs.
MiBench provides a small and a large input for the benchmarks. We used a
subset of small input. We also set the compiler optimizations to the maximum
possible level (i.e., —02) to achieve the best performance with both NISC and
MicroBlaze. For each benchmark, to get the accurate execution cycle count,
we generated RTL Verilog code of the design and simulated it using Modelsim
simulator.

Table II shows the number of cycles and code size of each benchmark on
the two processors. The code size of MicroBlaze (the third column) is the size
of instruction section (.text) of the ELF file generated by the compiler. Also
the fourth column is the code size in terms of number of on-chip Block RAMs
(BRAMs). BRAMs are ASIC memory units that exist on modern FPGA chips.
Similarly, the sixth and seventh columns show the code size of GNISC in terms
of KB and number of utilized BRAMs. The eighth column shows speedup of
GNISC compared to MicroBlaze. The ninth column shows the ratio of GNISC
code size (KB) to that of MicroBlaze. On average, GNISC runs 5.54 times faster
than MicroBlaze, while its code size is four times larger. Although GNISC
occupies almost the same number of LUTs as of MicroBlaze, it needs signifi-
cantly more BRAMs to store the code. In this article, we show that different
dictionary-based compression techniques can reduce the code size (in terms of
KB), but they may fail to reduce the number of utilized BRAMs in FPGA-based
implementation. The goal of our code optimization technique is to reduce the
code size of NISC processors (both in terms of BRAMs and KB) while main-
taining their performance benefits.

4. OVERVIEW OF EXISTING CODE-SIZE REDUCTION TECHNIQUES

In general-purpose processors, the instruction-set abstraction is used to reduce
the code size of processors. In RISC processors, designers define 32-bit or 16-
bit [Segars et al. 1995; Grehan 1997] instructions to encode wide control words.
At runtime, the instructions are decoded back to the control words using a
hardware decoder. In most processors, one or more pipeline stages are added
to the datapath for instruction decoding. As a result, instructions increase
branch delay, and hence, affect the performance of the processor (branch delay
is the number of cycles between the fetch of a branch instruction and finish-
ing the computation of branch target address). Branch prediction can partially
address this issue, but it increases the area of the processor. On the other

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



Code Compression for FPGA Implementation of Microcoded PEs . 11: 7

hand, designing an instruction set is a very complex and time-consuming task
for a typical hardware designer; because the compiler, assembler, linker and
instruction decoder must be redesigned to handle custom instructions. To in-
crease the productivity of designers and to give more control to the compiler,
in our approach, we eliminate the need for instruction-set design, and com-
pile the application directly to control words. To reduce the code size, instead
of using instructions, we directly compress the control words. This way, we
replace instruction decode stage(s) with control-words decompression stage(s).
In other words, the performance penalty of decompression is the same as the
instruction decoder.

As discussed in Section 2, VLIWs have also very large code sizes. In tra-
ditional (aka canonical) VLIWS, instructions have several slots, each of which
corresponds to an execution unit in the datapath. Due to limited parallelism
in the application, at every cycle, some of the units are idle; hence, their corre-
sponding instruction slot is filled with NOP operations. The existence of many
NOPs in the code increases its size significantly. To address this issue, modern
commercially successful VLIW architectures (such as TMS320C6x) allow more
flexible instructions based on the idea of Various Length Execution Set (VLES).
In this approach, NOPs are removed as much as possible and a few shortened
instructions are packed into one wide fetch packet. Different instruction pack-
ing algorithms are discussed by Saghir [1998] and Wang [2001]. For unpacking
VLES instructions, a few pipeline stages are added to the processor. For ex-
ample, in TMS320C6x, fetch/unpacking consists of four pipeline stages; hence,
in this processor, fetch and decode need overall six pipeline stages. If com-
pression is applied to VLIWSs, it may also need a few more pipeline stages for
decompression. Such high number of pipeline stages increases branch delay
and area significantly. In contrast, NISC does not have instructions or instruc-
tion slot. Therefore, it does not need the instruction decode stages. Also, since
it does not have NOP instructions, it does not need packing, and hence unpack-
ing pipeline stages. The only thing it needs is compression, which may add a
few pipeline stages to the processor for decompression.

Compression algorithms [Rafail 1994] can be categorized to two main
groups: dictionary-based (DBC) and arithmetic (statistic) based (ABC). Also,
they can be categorized as fixed length or variable length depending on
whether the compressed words (aka codewords) have the same length or not.

The dictionary-based compression techniques rely on the fact that the same
patterns appear many times in the data. Figure 4 shows how these techniques
typically work. The unique patterns are stored in a dictionary and the original
data is replaced with indexes to the dictionary. If original data has N words
and each word is n bits, then N x n bits must be stored. If the number of unique
patterns is M, and m=logaM is much smaller than n, then, a dictionary based
technique can compress the data down to N x m + M x n bits, which is often
smaller than N x n. However, the decompression costs one extra lookup. To
improve the compression, the dictionary-based compression can be combined
with Huffman coding where the frequently repeating instructions are placed
in low addresses of the dictionary and are coded with fewer number of bits.
In this case, the codewords become variable length and need more cycles to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



11: 8 . B. Gorjiara et al.

Original Compressed

-~

‘ BPi ‘ BPi-idx
— .

~—m—

BPj BPj-idx

BPi

BPk BPk-idx
BPj
N BPi N | BPi-idx M ’
n — BPk
BPi BPi-idx {

BPk BPk-idx

@ Output

Output

Fig. 4. Dictionary-based code compression.

decompress. Different variations of dictionary-based compression are proposed
for RISC processors. The Code Compressed RISC Processor (CCRP) [Wolfe
and Chanin 1992] combines dictionary-based compression with Huffman cod-
ing. IBM’s CodePack [Kemp et al. 1998; Lefurgy et al. 1999] improves the
compression efficiency of CCRP by partitioning instructions to two halves and
using two dictionaries to store the unique patterns of each half. Corliss et al.
[2003], Fraser [2002], and Lau et al. [2003] extend the concept of dictionary-
based compression to sequence of instructions. In these approaches, unique
sequences of instructions are identified and stored in a dictionary. Dictionary-
based compression has also been applied to VLIW processors. Ishiura and
Yamaguchi [1997] extend the instruction partitioning approach in CodePack
by automatically partitioning instructions to several fields so that the over-
all code size is minimized. This approach is applied to traditional (canonical)
VLIW processors and shows two to three times reduction in code size. How-
ever, in modern (VLES-style) VLIW processors dictionary-based compression
is very ineffective (only 10-15% code reduction) because instruction packing
increases the number of dictionary entries. To improve its efficiency, Ros and
Sutton [2004] propose combining nearly-identical instructions (that are differ-
ent only in a few bits) into a single entry in the dictionary. However, they add
a new field to codewords to specify the bits that must be toggled during decom-
pression. This approach improves the compression efficiency by a few percent-
ages. Since dictionary-based compression is less effective for modern VLIW
processors, arithmetic-based compression techniques (ABC) are proposed [Xie
et al. 2001; 2002], which have better compression ratio but have significantly
higher decompression overhead.

Depending on the decompression overhead, compression algorithms can be
implemented in two ways for general-purpose processors [Xie et al. 2002]:

(1) Pre-cache: where the code is decompressed between main memory and
cache. In other words, main memory contains the compressed code, and
the cache contains the decompressed code. In this approach, the decom-
pression penalty is paid only when a cache miss occurs. Compression tech-
niques that have relatively high decompression overhead (more than one
or two cycles) should be implemented as pre-cache. Huffman-coded dictio-
nary based compression techniques [Wolfe and Chanin 1992; Kemp et al.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



Code Compression for FPGA Implementation of Microcoded PEs . 11: 9

Code LUT

Dictionary

fo=d— o = =

Fig. 5. One-dictionary code compression (opt1).

1998; Lefurgy et al. 1999; Corliss et al. 2003; Fraser 2002; Prakash et al.
2003] and most arithmetic-based techniques [Xie et al. 2001; 2002] fall into
this category.

(2) Post-cache: where the code is decompressed between cache and processor.
In other words, both cache and main memory contain compressed code.
In this approach, the decompression hardware is on the critical path and
should be very fast. Some of the dictionary-based technique [Ishiura and
Yamaguchi 1997; Ros and Sutton 2004; Xie et al. 2003] and one of the arith-
metic based techniques [Xie et al. 2002] fall into this category.

In custom reprogrammable hardware units, the entire program and data may
fit in on-chip memory blocks. Therefore, cache may impose unnecessary over-
head. In our approach, we limit the decompression overhead to one or two
cycles in order to allow pre-cache, post-cache, and no-cache implementations.
Compared to previous approaches, our approach has several differences:

(1) We leverage the existence of “don’t care” values in our binary to improve
efficiency of traditional dictionary-based compression techniques.

(2) We show that multi-dictionary techniques (such as Ishiura and Yamaguchi
[1997]) may have good theoretical compression ratio, but when actually im-
plemented on FPGAs, they may occupy more memories than uncompressed
code. To address this issue, we propose a technique that leverages on-chip
dual-port memory blocks on FPGAs to improve memory utilization.

(3) We also propose a multi-level (cascaded) dictionary architecture that can
reduce the number of utilized on-chip memories by an additional 20% com-
pared to single-level dictionary compression.

5. MULTI-DICTIONARY MICROCODE COMPRESSION

In this section, we describe the concept of multi-dictionary compression and
explain how “don’t care” values in microcode can be leveraged for code size
reduction. Our tool constructs a dictionary of unique control words and, in
the executable binary, replaces each control word by its corresponding dictio-
nary line addresses. Figure 5 shows a one-dictionary (optI) code compression
approach. The memory structure consists of a Code lookup table (CodeLUT)
and a dictionary. The Program Counter (PC) contains the address of CodeLUT
and is used to read the next codeword. The codeword is then used to read the
corresponding control word from dictionary.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



11: 10 . B. Gorjiara et al.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1100|0101 |1T]OfO|O]T]|Of[1|]O]1]O
110|001 (1|1 |1|{O|O]JT1T]|Of[1|[]O]1]O
1110|0101 |T]Of1|1T]1T]Of1[]O]1]O
110|011 [Of1|1T]OfJO|O]JT]|Of[1|]O]1]O
ojojtrfjof1f{fo|1joOof1|]O]O|Of1|1]1]1
ojojtr{of1f{oj1f{ofl1]OjOf1T|]O]T1]|1]O
1j]o0jofof1 (1 |1T|1|{O|O]T|Of[1[O]|]1]O
ojojt1fjof1{o|J1]j]Of1]O]JO]JOf1[1]1]1
1110|0101 |T]Of1|1T]1T]Of[1]O]1]O
Fig. 6. CWs of a sample program.

o)

% 01 23456 7 8 910111213 1415

—— 1|0jOoj1|[Of1|[1[0]|]O]|O|1[O|L]|O|1]O

% 110{0[O[1|1|1[1]0]O|1[O|1]|]O|[1]O

ool 1jojojrjofrfrfoj1|t1rj1f{o|1|jofj1{fo0

o011 0/0|1]0|1|0|1[O|1]0OJO]JO|1|T1]T1]1

— 0/0|1]0|1]|0|1]|0O|1]0]O]1|[O0O|1]|T1]O0

ot

[010]

Fig. 7. Single-dictionary compression on CWs of Figure 6.

The following example shows how dictionary-based compression can reduce
the total size of control memory. Suppose that Figure 6 shows the CWs of a
sample program. Each CW has 16 bits and the program has nine CWs. There-
fore, the code size of the program is 144 bits (16 x 9). Figure 7 shows the com-
pressed implementation of Figure 6, where the dictionary contains five unique
CWs and the CodeLUT contains the corresponding address of the CWs. To ad-
dress the dictionary, three bits are needed; thus, the codewords are three-bit
wide. After compression the total binary size is reduced to 107 (i.e. 3x9+16x5).

Since CWs can be very wide with many unique patterns, the dictionary may
have many entries and the compression efficiency may be low. To increase
the chances of finding matching patterns, we can partition the CWs to smaller
slices and construct multiple dictionaries. Usually the total size of the parti-
tioned dictionaries is much smaller than that of a single big dictionary. How-
ever, corresponding to each dictionary, a code field must be added to codewords.
Figure 8 shows the two-dictionary (opt2) implementation of the example
CWs of Figure 6. The top dictionary contains the unique patterns of the
least significant half of the CWs, while the bottom dictionary has those of
the most significant halves. Note that the number of unique control word
slices in each half is less than the total number of unique control words. The
codewords have two fields, which are used to address the two dictionaries.
Since each dictionary has four or less entries, the codeword fields are only two
bits. Using two-dictionary implementation the code size is reduced to 92 bits
(i.e. 4x9+8x3+8x4).

As number of dictionaries increases, the number of codeword fields increases
and eventually cancels out the code size reduction achieved by partitioning.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



Code Compression for FPGA Implementation of Microcoded PEs . 11: 11

0 1 2 3 4 5 6 7
00100 T ToJol1 o110
01]00
s TTololol 11 |1]1
o olol1 o1 0o|1]0
ig 1(1) 8 9 10 11 12 13 14 15
L oTol1 o1 o 1]0
il i l1]ol1lol1]o0
o TTololo 11 ]1]1
T Tolol1 o1 ]1]0

Fig. 8. Two-dictionary compression on CWs of Figure 6.

Code LUT Rlictionaries frogetr Dictionaries

=Y 2 mE N ==

=5 - Je=b o e B
> B = > o=

@ - (b)

Fig. 9. (a) Two-dictionary (opt2) and (b) Three-dictionary compression (opt3).

LO[X| X[ X|X[X]|1[1][0[X]O]|1
0X[X|1[1]ojojo|l[X]|O[X|X]|I]1
X[0jo[1[X[1]0]1]0|X[X]|0[0]|0[X
1X[0]X[L[X[0]X[0o]1|1[X|0]X]1
0/]0(X]|1[1]0|X[O|1]0 O[OJO|I]1

Fig. 10. Example of control words generated by NISC compiler.

Figure 9 shows two-dictionary (opt2) and three-dictionary (opt3) code compres-
sion approaches. The performance penalty in all cases is the same since the
dictionaries are accessed in parallel. In addition to the number of dictionar-
ies, the way “X” values are resolved in the binary may affect the efficiency of
compression.

5.1 Compression-Aware “Don’t Care” Resolution (CX)

Figure 10 shows an example of NISC control words. As explained in Section 2,
the control words contain “don’t care” values (denoted by “X”), which indicate
that some of the units are idle at a given cycle and their control signals can
be assigned to “0” or “1” without affecting program behavior. To build a dic-
tionary for the CWs, one may replace “X” values by “0” and then extract the
unique patterns. In that case, the dictionary (shown in Figure 11) will have
four entries, because only the second and the last vectors match. However, if
the “X” values are smartly resolved, then seemingly different patterns can be
combined into one dictionary entry.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



11: 12 . B. Gorjiara et al.

1/0{0]0|1|1[0]0O[O]1[1]0[0]O]1
0/0{0]1[{1]0J0O|O[1]0]JO[OJO|I]1
0/0{0]1][0]1|/0]|1[0]0|0]|0O|O]0O]O
1/0{0]0]|1|0[0]O]O]1|1]0|0]O]1

Fig. 11. Dictionary content for CWs of Figure 10 (“X” are replaced by “0”).

In general, we need to resolve “X” values in CWs so that the total number of
unique patterns is minimized. To solve this problem, we convert it to a graph
coloring [Jensen and Toft 1995] problem. For a given list of bit-vectors, we
construct a graph G(V, E), where the vertices in V are the bit-vectors, and the
edges in E show the conflict between the vectors. Two bit-vectors v, and ve do
NOT have conflict if they can be collapsed into a single vector:

Vie {1,..., N}, vilil = va[i] OR v1[i] = “X” OR wvoli] = “X™.

where, N is the number of bits in a bit-vector. The edges in E are defined
between the vectors that have conflict with each other:

E ={(vi,v2) | wv1 has conflict with ve}.

The algorithm must partition the vertices (or vectors) to subcategories so that
there is no edge (i.e., conflict) between any two vertices in the same category
while minimizing the total number of categories. This is exactly the graph col-
oring problem where each category is represented by a distinct color [Jensen
and Toft 1995]. Solving the graph coloring problem optimally is NP-hard
[Garey and Johnson 1979]. But there are many well-known heuristics that
generate fine results in polynomial time. We use Welsh and Powell algorithm
[Jensen and Toft 1995], a greedy heuristic, that (1) sorts vertices based on their
degree in decreasing order; (2) traverses the graph and colors as many nodes
as possible with color c¢1; and (3) repeats step (2) with color ¢2, ¢3, etc., until
no vertex is left uncolored. Figure 12 shows the details of our algorithm. After
coloring the graph, a new vector is generated for each color by combining the
values of the vectors that share the same color (see line 11-16). Then, all such
vectors are replaced with the new vector. The new vectors are also used to fill
the dictionary. Figure 13 shows how the algorithm is applied to the example
of Figure 10. The graph coloring algorithm produces only two colors. The first,
third, and fourth vectors are mapped to the first entry of Figure 14, and the
other two vectors are mapped to the second entry.

This algorithm is coded in C# and is added to our toolset. For our bench-
marks, it takes only a few seconds to apply this algorithm. The only exception
is MP3, which takes a few minutes.

In Gorjiara and Gajski [2007], we have shown that “X” values can also be
resolved for power optimization at the cost of compromising compression effi-
ciency. We also proposed a profile-driven “don’t care” resolution technique that
achieves both power and code size efficiency.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



Code Compression for FPGA Implementation of Microcoded PEs . 11: 13

1 Compress (V, N)

2 //Inputs:

3 //V: the list of vectors

4 //N: the bit width of the vectors

5 [loutput: CV, the list of compact vectors.

6 G = ConstructConflictGraph(V);

7 C = Color(G), /I C is the set of colors
8 for each color cin C

9 /I create a new vector that contains only ‘X’
10 cv =new BitVector('X", N );

11 for each vector vin V/

12 if (color of vis ¢)

13 /Imerging the two vectors

14 for i=1to N

15 if(v[i] 1="X")

16 evli] = v[i];

17 for each vector vin CV

18 replace the remaining 'X' in v with '0’

19 CV.Add(cv);
20 return CV,

Fig. 12. Compression-aware “don’t care” resolution algorithm.

0?0

Fig. 13. Colored conflict graph of the CWs in Figure 10.

,_.
S
S
[
—_
—_
S
[
—_
—_
—_
(=]
—

Fig. 14. Dictionary content using compression-aware “X” resolution.

5.2 Flow of Our Tool

Figure 15 shows the flow of our tool. First the application is compiled on the
datapath and control words are generated. Then, the control words are par-
titioned and their “don’t care” values are resolved using the approach in Sec-
tion 5.1. Finally, the HDL code of the design is generated. The techniques
presented in this article have been completely implemented and are added to
our toolset, which is available online at http:/www.cecs.uci.edu/~nisc.

5.3 Compression Efficiency

In this section we study the effects of multi-dictionary compression as well as
compression-aware “don’t care” resolution (CX). The same MP3 and MiBench
benchmarks used in Section 3 are also used in this Section. Table IIT shows
the binary size of the benchmarks compiled on GNISC with and without code
compression. The second column (No-opt) shows the baseline code size without
any compression. The third to sixth columns (opt1, opt2, opt3, and opt4) show

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



11: 14 . B. Gorjiara et al.

@ NISC i Partitioning Resolving Generating | | @
Compiler ! CWs “don’t cares” HDL |

Dictionary [ FRTL Generator
params

Fig. 15. Flow of our tools.

¥

Table III. Code Size of Benchmarks with Different Compression Techniques

without compression-aware with compression-aware
‘x’ resolution ‘x’ resolution

No-opt optl opt2 opt3 optd optl opt2 opt3 optd
adpcm_coder 6.96 4.34 2.90 2.63 2.65 3.77 2.44 2.19 2.19
adpcm_decoder 5.08 3.76 2.38 1.92 2.03 3.24 1.98 1.59 1.68
CRC32 2.57 2.12 1.31 1.08 1.02 1.72 1.04 0.85 0.80
dijkstra 9.61 4.92 3.17 3.02 3.22 4.32 2.71 2.52 2.68
sha 14.12 8.24 5.61 5.23 5.26 6.75 4.45 4.12 4.14
Mp3 216.66 92.66 73.17 79.16 88.98 82.00 63.08 67.66 76.05
average CR 1.00 0.62 0.41 0.37 0.38 0.53 0.34 0.30 0.31

the code size with one to four dictionaries, respectively. In these approaches,
the “X” values are simply replaced by “0” and then the dictionaries are con-
structed. As the number of dictionaries increases, the code size (i.e., the total
size of dictionaries and CodeLUT) of all the benchmarks decreases up to cer-
tain points and then increases again. These are the points where the increase
in CodeLUT size cancels out the benefit of having more dictionaries. The opti-
mum number of dictionaries may vary for different applications.

The seventh to tenth columns of Table III show the binary size when
dictionary-based compression is combined with the compression-aware “X”
resolution (CX) technique introduced in Section 5.1. The CX technique reduces
the code size by an additional 15%-27% (avg. 20%) compared to compression
alone. Similarly, as the number of dictionaries increases, the code size of all
the benchmarks decreases up to certain points (the highlighted values) and
then increases again.

The last row of Table III shows the Compression Ratio (CR), a metric com-
monly used to evaluate a compression algorithm. CR is the ratio between
the compressed size and the original size, and smaller CR values show a bet-
ter compression. On average, for all these benchmarks, the CX-based three-
dictionary compression (i.e., opt3) outperforms the others and achieves CR of
0.3. In opt3, the total code size is one-third of the code size of No-opt.

Table IV compares the code size of compressed GNISC with that of
MicroBlaze. The second column shows the code size of optimized GNISC (i.e.
the highlighted values in Table III) and the third column shows the code size of
MicroBlaze (from Table II). The fourth column shows the ratio of the code sizes
of GNISC and MicroBlaze. For the small benchmarks, the code size of com-
pressed GNISC is very close or even smaller than that of MicroBlaze. However,
for the medium and large benchmarks, GNISC code size is still significantly
higher than MicroBlaze (30-40%). In Section 7, we propose a cascaded dictio-
nary structure that can further reduce the code size of larger applications.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



Code Compression for FPGA Implementation of Microcoded PEs . 11: 15

Table IV. Comparing Code Size of Compressed GNISC with MicroBlaze

Code size (Kbytes) Code size ratio
GNISC-opt | MicroBlaze | GNISC-opt vs. MicroBlaze
adpcm_coder 2.19 1.95 1.12
adpcm_decoder 1.59 1.36 1.17
CRC32 0.80 1.26 0.63
dijkstra 2.52 1.93 1.31
sha 4.12 3.16 1.30
Mp3 63.08 44.62 1.41
average 1.16

Table V. Number of Utilized 18Kbit Block RAMs

Memory size (number of 18Kbit block RAMs)
MBlaze | No-opt | optl | opt2 | opt3 | optd

adpcem_coder 1 4 5 6 6 7
adpcm_decoder 1 3 4 5 5 6
CRC32 1 3 4 5 5 6
dijkstra 1 6 5 6 7 9
sha 2 11 5 6 9 11
Mp3 21 117 67 34 38 38

In this section, we showed that multi-dictionary compression along with
compression-aware “X” resolution reduce the code size by more than three
times (i.e., compression ratio of 0.3). However, in the next section we show
that low compression ratio does not necessarily result in an efficient design
when targeting FPGA platforms. In fact, in some cases, the compressed code
may occupy more resources than the uncompressed one.

5.4 Block RAM Utilization in FPGA-Based Implementations

In this section, we investigate whether dictionary-based compression can
actually reduce resource utilization in an FPGA-based implementation. In
FPGAs, the CodeLUT and dictionaries may be implemented using lookup ta-
bles or memory blocks (RAM). In today’s FPGAs, tens or even hundreds of
compact and fast memory blocks exist. Each block has a predefined size and a
set of configurations: for example, in Xilinx Virtex4 FPGA, each block RAM is
18Kbits and can be configured statically to a 1x18Kb, 2x9Kb, 4x4Kb, 8 x2Kb,
16x1Kb, or 32x0.5Kb memory. These configurations are called RAM primi-
tives. In FPGAs, logical memories are implemented using one or more block
RAMs depending on their width, depth, and available primitives. Reducing
the number of utilized BRAMs is important because it allows packing more
processing elements into smaller, low-cost FPGAs.

Table V shows the number of utilized 18Kbit block RAMs in different imple-
mentations on Xilinx Virtex4SX35. This package is large and contains hun-
dreds of block RAMs. In the MicroBlaze implementation (the second column),
most of the benchmarks need only one block RAM for their code, except for
sha and Mp3, which need 2 and 21 blocks, respectively. These numbers are
significantly higher for NISC (the third column), because the CWs are wide,
and block RAM primitives do not support wide words. In terms of block RAM
utilization, NISC requires on average five times more blocks than MicroBlaze.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



11: 16 . B. Gorjiara et al.

CodelLUT
|

: oo o ) [ o
Nmm el o) = = B ) =
e B | 1=
A=
@ (b)
L E>.m|:>
2> W o) =
=
Se 3

Fig. 16. (a) Two-, (b) three-, (c) four-dictionary code compression using a dual-port memory
(opt2DP, opt3DP, opt4DP).

Surprisingly, the compression techniques even increase the number of utilized
block RAMs for the smaller applications (i.e., adpem_coder, adpcm_decoder, and
CRC32). However, for medium and large applications (i.e., dijkstra, sha, and
Mp3), the compression techniques reduce the number of block RAMs. Although
our code compression techniques reduce the code size, they tend to increase the
number of memory units, thus occupying more partially-utilized block RAMs.
Note that opt3 is the best compression technique in terms of compression ratio
(as shown in Table III). However, it wastes many block RAMs in FPGA im-
plementations (as shown in Table V). To address this issue, we introduce our
FPGA-aware microcode compression in the following section.

6. FPGA-AWARE MICROCODE COMPRESSION

In Xilinx FPGAs, each block RAM can be configured as single port or dual port
with very little logic overhead. We use this property to reduce the number of
utilized block RAMs. We integrate every two dictionaries into one dual-port
memory. Figure 16(a), (b), and (c) show the dual-port implementation of opt2,
opt3,and opt4, respectively. Note that the merged dictionary contents may
have more entries than each individual dictionary. However, the size of the
merged dictionary is less than the total size of the two dictionaries, because
redundant entries can be removed after merging the contents. Since merging
dictionaries increases the depth of the dictionary unit, the width of codewords
may increase as well. As a result, the total code size most-likely remains the
same as before, but the number of utilized block RAMs decreases.

Figure 17 shows the dictionary content and CodeLUT of the dual-port im-
plementation of Figure 8. The seven entries of the two dictionaries in Figure 8
are compacted to four unique entries in Figure 17. The codewords are also up-
dated to refer to the correct bit patterns. Compared to Figure 8 that requires

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



Code Compression for FPGA Implementation of Microcoded PEs . 11: 17

11]00]
10(00]
11]01
11]00]
00110
0011
10(00]
00110]
11|01

—=—=]o
el k=l k=] =}
——=lo|lo
—_ ===
(=) Ll Eell R}

S| = [ =

o|lo|—=]|—

(=) k) ol k)

Fig. 17. Dual-port memory implementation of Figure 8.

Table VI. Number of Utilized 18Kbit Block RAMs for All Compression Approaches

Memory size (number of 18Kbit block RAMs)
MBIlaze | No-opt | optl | opt2 | opt3 | opt4d | opt2DP | opt3DP | opt4DP
adpcm_coder 1 4 5 6 6 7 3 4 4
adpcm_decoder 1 3 4 5 5 6 2 3 3
CRC32 1 3 4 5 5 6 2 3 3
dijkstra 1 6 5 6 7 9 3 5 5
sha 2 11 5 6 9 11 4 5 5
Mp3 21 117 67 34 38 38 36 42 43

three block RAMs, Figure 17 requires only two RAMs. Also, the code size is
reduced to 68 bits (i.e. 4x9+8x4).

Table VI shows the number of utilized block RAMs with single and dual
port compression techniques. Using dual-port memories (i.e., opt2DP, opt3DP,
and opt4DP) reduces the number of utilized block RAMs compared to single-
port memories. The minimum number of blocks is achieved using opt2DP for
adpcm_coder, adpem _decoder, CRC32, dijkstra, and sha. For Mp3 decoder,
however, the minimum is achieved using opt2. That is due to a significant
size increase in CodeLUT of MP3 when using dual-port dictionaries. Overall,
merging the dictionaries (i.e., opt2DP) reduces the number of block RAMs by
46% compared to uncompressed NISC, and by 50% compared to corresponding
unmerged dictionary compression (i.e. opt2). However, compared to MicroB-
laze, opt2DP requires 2.3 times more Block RAMs, on average. Note that as the
program size increases, the gap between opt2DP and MicroBlaze decreases.

To further improve RAM utilization, we can also adjust the width of dic-
tionaries to match the width of RAM primitives. For example, in a three-
dictionary implementation of 75-bit control words, instead of having three
equally-sized 25-bit dictionaries, we can have two 32-bit wide dictionaries (that
can be merged into one dual-port memory), and an 11-bit dictionary. This
way, the block RAMs are more efficiently utilized and deeper memories can be
designed with fewer RAMs.

7. CASCADING DICTIONARIES

For large applications, we also propose to use cascaded dictionaries, where
the CodeLUT is replaced by a new dictionary and a narrower CodeLUT.
Figure 18 shows the cascaded version of the opt3DP (see Figure 16(b)). In this
approach, the unique three-field codewords are stored in an intermediate dic-
tionary and CodeLUT content is replaced by the references to those dictionary

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



11: 18 . B. Gorjiara et al.

CodeLUT

] Dictionary Dictionaries

- dual port
P |::>l\lookup i>

= gy B

O mnsY Ol =—=1

Fig. 18. Cascaded version of opt3DP in Figure 16(b).

entries. The new codewords must be narrower than the original codewords
to achieve savings. This technique requires an additional lookup and hence
has higher performance penalty. For small and medium size applications, cas-
cading dictionaries improves the compression ratio but does not reduce the
number of utilized Block RAMs. However, for the Mp3 application cascaded-
opt3DP reduces the number of utilized block RAMs as well (from 34 to 28). If
we also adjust the dictionary width to match Xilinx Block RAM primitives, we
can reduce the number of blocks to 27, which is 4.3 times better than NISC
without compression (No-opt), and 20% better than the best single-level com-
pression technique for MP3 (i.e., opt2). Compared to MicroBlaze that needs 21
Block RAMs, cascaded, merged dictionary NISC needs only 28% more RAMs.

8. PERFORMANCE PENALTY OF DECOMPRESSION

As mentioned in Section 4, the performance penalty of a decompression unit
depends on its complexity as well as its position with respect to the cache
architecture. If the decompression unit is placed between the main memory
and the cache (a pre-cache approach), then decompressions are limited to cache
misses only and hence, their overall penalty is negligible. However, if the unit
is placed between the cache and the processor (a post-cache approach) or be-
tween the memory and the processor (in systems without a cache) then, the
penalty is non-negligible. In this section, to determine the worst-case perfor-
mance penalty, we consider a system without a cache where decompression
unit is placed between memory and the processor.

All the compression techniques in Sections 5 and 6 have the same perfor-
mance penalty. They increase the number of fetch pipeline stages by one, which
increases the branch delay by one cycle. The cascaded dictionary structure pro-
posed in Section 7 has a higher performance penalty because it increases fetch
pipeline stages (and hence the branch delay) by two. In addition to caches,
there are two other approaches for reducing the performance penalty of de-
compression: (1) branch prediction, and (2) filling branch delay slot. In branch
prediction, the controller predicts what would be the target of a branch opera-
tion, and starts fetching from the predicted target address. If it turns out that
the prediction was wrong, the controller flushes the affected pipeline stages. In

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



Code Compression for FPGA Implementation of Microcoded PEs . 11: 19

Table VII. Comparing Performance of GNISC-opt with That of GNISC and MicroBlaze

GNISC GNISC-opt. GNISC-opt. vs.| GNISC-opt. vs.

(without compression) | (with 1-level compression) GNISC MicroBlaze
Benchmarks #cycles #cycles slowdown (%) speedup (x)
adpcem_coder 74321930 84251684 13.36 3.05
adpcm_decoder 63082673 66504319 5.42 4.85
CRC32 21901993 26008604 18.75 8.05
dijkstra 9764682 10631310 8.88 2.44
sha 19282976 18371827 3.33 9.96
Mp3 897452 927307 4.96 2.88
Average 9.12 5.21

the branch delay slot approach, the compiler tries to find operations that are
independent of the branch operation, and schedule them after the branch to fill
the branch delay slot. The branch delay slot approach is done at compile time
and does not impose any hardware overhead. In contrast, branch prediction
needs more complex hardware. Currently, our compiler supports branch delay
slot, but branch prediction can also be added in the future.

We generated HDL code for the GNISC datapath with and without compres-
sion stage(s) and simulated the code using Modelsim simulator. In Table VII,
the second and third columns show cycle count of each benchmark without
and with compression, respectively. The fourth column shows the performance
overhead of single-level compression in terms of the slowdown percentage com-
pared to the baseline GNISC. The performance penalty depends on the number
of jump operations and how well the compiler can fill the extra branch delay
slot. On average, the performance is degraded by only 9.12% (up to 19%). The
fifth column compares the speed of optimized GNISC with that of MicroBlaze
processor. The optimized GNISC is on average 5.21 times faster than MicroB-
laze. This shows that the compression techniques had little effect on the per-
formance of GNISC even without cache and branch prediction. For cascaded
dictionaries (two-level compression), only the MP3 application shows improve-
ment. Therefore, we simulated MP3 and observed an additional 3% perfor-
mance penalty compared to single-level compression. This penalty is about 8%
when compared to uncompressed GNISC.

9. CONCLUSION

In this article, we studied the code size of NISC PEs and compared it with
that of traditional RISC processors. We observed that although NISC PEs
outperform RISC processors by five times on average, their code sizes are about
four times larger.

We studied the use of different variations of dictionary-based code compres-
sion techniques on the NISC binary. We showed that although multi-dictionary
compression reduces the code size by 3.3 times, its FPGA implementation is
very inefficient and can result in occupying more resources than the uncom-
pressed code. To overcome this limitation, we proposed to merge every two dic-
tionaries into a single dual-port memory unit on FPGAs. Using this approach,
the block RAM utilization is improved by 46%. Also, for large applications,
we proposed using cascaded dictionaries, where multi-levels of dictionaries
are used to decompress the code. For MP3 application, a merged, cascaded,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



11: 20 . B. Gorjiara et al.

three-dictionary implementation reduces the number of utilized block RAMs
by 4.3 times (76%) compared to a NISC without compression. This corresponds
to 20% additional savings over the best single-level dictionary-based compres-
sion. Compared to MicroBlaze our compressed MP3 consumes only 28% more
block RAMs.

REFERENCES

AGRAWALA, A. AND RAUSCHER, T. 1976. Foundations of Microprogramming: Architecture, Soft-
ware, and Applications. Academic Press.

CODWELL, R., NIX, R., DONNELL, J., PAPWORTH, D., AND RODMAN, P. 1987. A VLIW architec-
ture for a trace scheduling compiler. ACM SIGOPS Operat. Syst. Rev. 21, 4.

CoORLISS, M., LEwIS, E., AND ROTH, A. 2003. DISE: a programmable macro engine for cus-
tomizing applications. In Proceedings of the International Symposium on Computer Architecture
(ISCA).

FRASER, C. 2002. An instruction for direct interpretation of LZ77-compressed programs. Tech.
rep. MSR-TR-2002-90, Microsoft Research, Microsoft Corporation.

GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman.

GORJIARA, B. 2007. Synthesis and optimization of custom low-power NISC processors. Ph.D. dis-
sertation, University of California, Irvine.

GORJIARA, B. AND GAJSKI, D. 2005. Custom processor design using NISC: A case-study on DCT
algorithm. In Proceedings of the IEEE Workshop on Embedded Systems for Real-Time Multime-
dia (ESTIMedia).

GORJIARA, B. AND GAJSKI, D. 2007. A novel profile-driven technique for simultaneous power
and code-size optimization of nanocoded IPs. In Proceedings of the International Conference on
Computer Design (ICCD).

GORJIARA, B. AND GAJSKI, D. 2008. Automatic Architecture Refinement Techniques for Cus-
tomizing Processing Elements. In Proceedings of the Design Automation Conference (DAC).

GORJIARA, B., RESHADI, M., CHANDRAIAH, P., AND GAJSKI, D. 2006. Generic netlist represen-
tation for system and PE level design exploration. In Proceedings of the International Conference
on Hardware /| Software Codesign and System Synthesis (CODES+ISSS).

GREHAN, R. 1997. 16-bit: The good, the bad, your options. Embed. Syst. Prog.

ISHIURA, N. AND YAMAGUCHI, M. 1997. Instruction code compression for application specific
VLIW processors based on automatic field partitioning. In Proceedings of the International Con-
ference on Synthesis and System Integration of Mixed Information System (SASIMI).

JENSEN, T. AND TOFT, B. 1995. Graph Coloring Problems. Wiley-Interscience. New York.

KeEMP, T., MONTOYE, R., AUERBACK, D., HARPER, J., AND PALMER, J. 1998. A Decompression
Core for PowerPC. IBM Corporation.

LAU, J., SCHOENMACKERS, S., SHERWOOD, T., AND CALDER, B. 2003. Reducing code size with
echo instructions. In Proceedings of the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES).

LEFURGY, C., PICCININNI, E., AND MUDGE, T. 1999. Evaluation of a high performance code
compression method. In Proceedings of the International Symposium on Microarchitecture.

LEKATSAS, H., HENKEL, J., AND JAKKULA, V. 2002. Design of a one-cycle decompression hard-
ware for performance increase in embedded systems. In Proceedings of the Design Automation
Conference (DAC).

PRAKASH, J., SANDEEP, C., SHANKAR, P., AND SRIKANT, Y. 2003. A simple and fast scheme for
code compression for VLIW processors. In Proceedings of the Data Compression Conference.

RAFAIL, K. 1994. Universal Compression and Retrieval. Kluwer Academic. Publishing.

RAU, B., YEN, D., YEN, W., AND TOWLE, R. 1989. The cydra 5 departmental supercomputer:
Design philosophies, decisions, and trade-offs. IEEE Computers, 22, 1, 12—-34.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



Code Compression for FPGA Implementation of Microcoded PEs . 11: 21

RESHADI, M. 2007. No-instruction-set-computer (NISC) technology modeling and compilation.
Ph.D. thesis, University of California, Irvine.

RESHADI, M. AND GAJSKI, D. 2005. A cycle-accurate compilation algorithm for custom pipelined
datapaths. In Proceedings of the International Conference on Hardware [ Software Codesign and
System Synthesis (CODES+ISSS).

RESHADI, M. AND GAJSKI, D. 2007. Interrupt and low-level programming support for expanding
the application domain of statically-scheduled horizontally-microcoded architectures in embed-
ded systems. In Proceedings of the Design Automation and Test in Europe (DATE).

RESHADI, M., GORJIARA, B., AND GAJSKI, D. 2005. Utilizing horizontal and vertical parallelism
using a no-instruction-set compiler and custom datapaths. In Proceedings of the International
Conference on Computer Design (ICCD).

RESHADI, M., GORJIARA, B., AND GAJSKI, D. 2008. C-Based design flow: A case study on G.729A
for voice over internet protocol (VoIP). In Proceedings of the Design Automation Conference
(DAC).

RosS, M. AND SUTTON, P. 2004. A hamming distance based VLIW/EPIC code compression tech-
nique. In Proceedings of the International Conference on Compilers, Architectures, and Synthesis
for Embedded Systems (CASES).

SAGHIR, M. 1998. Application-specific instruction-set architectures for embedded SDP applica-
tions. Ph.D. thesis, University of Toronto.

SEGARS, S., CLARKE, K., AND GOUDGE, L. 1995. Embedded control problems, Thumb, and the
ARMT7TDMLI. IEEE Micro 15, 5, 22-30.

TRAJKOVIC, J., RESHADI, M., GORJIARA, B., AND GAJSKI, D. 2006. A graph based algorithm
for data path optimization in custom processors. In Proceedings of the Euromicro Conference on
Digital System Design.

WANG, K. 2001. Code compaction for VLIW instructions. M.S. thesis, University of Toronto.

WEBER, S. AND KEUTZER, K. 2005. Using minimal minterms to represent programmability. In
Proceedings of the International Conference on Hardware /Software Codesign and System Syn-
thesis (CODES+ISSS).

WOLFE, A. AND CHANIN, A. 1992. Executing compressed programs on an embedded RISC archi-
tecture. In Proceedings of the International Symposium on Microarchitecture.

XIE, Y., WOLF, W., AND LEKATSAS, H. 2001. A code decompression architecture for VLIW proces-
sors. In Proceedings of the International Symposium on Microarchitecture.

XIE, Y., WoLF, W., AND LEKATSAS, H. 2001. Compression ratio and decompression overhead
tradeoffs in code compression for VLIW architectures. In Proceedings of the IEEE International
ASIC Conference.

XIE, Y., WoLF, W., AND LEKATSAS, H. 2002. Code compression for VLIW processors using
variable-to-fixed coding. In Proceedings of the International Symposium on System Synthesis
(ISSS).

XIE, Y., WOLF, W., AND LEKATSAS, H. 2003. Profile-driven selective code compression. In Pro-
ceedings of the Design, Automation and Test in Europe (DATE).

Received May 2007; revised October 2007, February 2008; accepted April 2008

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 11, Pub. date: June 2008.



