Hybrid-Compiled Simulation: An Efficient
Technique for Instruction-Set Architecture
Simulation

MEHRDAD RESHADI
University of California Irvine
PRABHAT MISHRA
University of Florida

and

NIKIL DUTT

University of California Irvine

Instruction-set simulators are critical tools for the exploration and validation of new processor
architectures. Due to the increasing complexity of architectures and time-to-market pressure, per-
formance is the most important feature of an instruction-set simulator. Interpretive simulators are
flexible but slow, whereas compiled simulators deliver speed at the cost of flexibility and compi-
lation overhead. This article presents a hybrid instruction-set-compiled simulation (HISCS) tech-
nique for generation of fast instruction-set simulators that combines the benefit of both compiled
and interpretive simulation. This article makes two important contributions: (i) it improves the
interpretive simulation performance by applying compiled simulation at the instruction level us-
ing a novel template-customization technique to generate optimized decoded instructions during
compile time; and (ii) it reduces the compile-time overhead by combining the benefits of both static
and dynamic-compiled simulation. Our experimental results using two contemporary processors
(ARM7 and SPARC) demonstrate an order-of-magnitude reduction in compilation time as well as a
70% performance improvement, on average, over the best-known published result in instruction-set
simulation.

Categories and Subject Descriptors: 1.6.5 [Simulation and Modeling]: Model Development; 1.6.7
[Simulation and Modeling]: Simulation Support Systems

General Terms: Design, Performance

This work was partially supported by NSF grants CCR-0203813 and CCR-0205712.

Authors’ addresses: M. Reshadi, Center for Embedded Computer Systems, University of California
Irvine, CA 92697; email: reshadi@cecs.uci.edu; P. Mishra, Department of Computer and Information
Science and Engineering, University of Florida, FL 32611; email: prabhat@cise.ufl.edu; N. Dutt,
Center for Embedded Computer Systems, University of California Irvine; email: dutt@cecs.uci.
edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2009 ACM 1539-9087/2009/04-ART20 $5.00

DOI 10.1145/1509288.1509292 http://doi.acm.org/10.1145/1509288.1509292

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:2 o M. Reshadi et al.

Additional Key Words and Phrases: Compiled simulation, interpretive simulation, instruction set
architecture, partial evaluation
ACM Reference Format:

Reshadi, M., Mishra, R., and Dutt, N. 2009. Hybrid-compiled simulation: An efficient technique for
instruction-set architecture simulation. ACM Trans. Embedd. Comput. Syst. 8, 3, Article 20 (April
2009), 27 pages. DOI = 10.1145/1509288.1509292 http://doi.acm.org/10.1145/1509288.1509292

1. INTRODUCTION

An instruction-set simulator (ISS) is a tool that runs on a host machine to mimic
the behavior of an application program running on a target machine. ISSs are
indispensable tools in the development of new processor architectures. They
are used to validate an architecture design, a compiler design, as well as to
evaluate architectural design decisions during design space exploration. These
simulators should be fast to handle the increasing complexity of processors;
flexible to handle features of applications and processors such as runtime self-
modifying codes and multi-mode processors; and retargetable to support a wide
spectrum of architectures.

Traditional interpretive simulation is flexible but slow. In this technique, an
instruction is fetched, decoded, and executed at runtime, as shown in Figure 1.
Instruction decoding is a time-consuming process in a software simulation. It
also affects the performance of the execute stage in the simulation loop.

Compiled simulation performs compile time decoding of application program
to improve the simulation performance, as described in Section 3. However, all
compiled simulators rely on the assumption that the complete program code
is known before the simulation starts and is more runtime static. Due to this
assumption, many application domains are excluded from the utilization of com-
piled simulators. Similarly, compiled simulators are not applicable in embedded
systems that use processors having multiple instruction sets. These processors
can switch to a different instruction-set mode at runtime. For instance, the
ARM processor [ARM7] uses the Thumb (reduced bit-width) instruction-set to
reduce power and memory consumption. This dynamic switching of instruction-
set modes cannot be considered by a simulation compiler, since the selection
depends on runtime values and is not predictable. Similarly, applications with
runtime dynamic program code, as provided by operating systems, cannot be
addressed by compiled, simulators. Furthermore, compiled simulators rely on
a compiler to compile and optimize the decoded program. As a result, it intro-
duces other limiting factors such as compilation time overhead and the size of
the input application program that the compiler can handle.

Due to the restrictiveness of the compiled technique, interpretive simula-
tors are typically used in embedded systems design flow. This article presents
a novel technique for generation of fast ISSs that combines the performance
of traditional-compiled simulation with the flexibility of interpretive simula-
tion. Our instruction-set compiled simulation (ISCS) technique achieves high
performance by optimizing the Decode and Execute stages of interpretive sim-
ulation (Figure 1). The time-consuming decode stage is moved to compile

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:3

Input Simulation
program ::> Memory

Runtime

Fig. 1. Traditional interpretive simulation flow.

Architecture Specification [
(ISA)

ISA lnformati(in

Application @ @ i
(binary)

I Compiletime || Runtime |

1
1
Feedback |
1
1
1

Fig. 2. Design space exploration.

time while maintaining the flexibility of interpretive simulation by applying
decode and optimization at the instruction-level granularity. We use a template-
customization technique to generate aggressively optimized decoded instruc-
tions to improve the performance of the execute stage. Our experimental results,
using two contemporary processor models (ARM7 and SPARC), demonstrate
70% performance improvement on average over the best-known published re-
sult in this category.

Although the ISCS technique improves simulation performance by moving
the decode step to compile time and performing various compile time optimiza-
tions, it introduces compilation challenges in terms of both compilation time and
memory usage. These compilation challenges are also present in traditional-
compiled simulation. Since the whole target program is converted into a source
code that must be compiled and optimized by a compiler, compiled simulation
is only applicable if the compiler can handle the size of the generated source
code and can finish the compilation in an acceptable amount of time. In general,
compilation is done once and the simulation is performed multiple times. As
a result, the longer compilation time is amortized over multiple faster simula-
tion runs. However, a long compilation time is not acceptable, especially in the
context of early design space exploration.

During design space exploration an architect, tries to figure out the best-
possible instruction-set architecture (ISA) for the given set of application pro-
grams under various design constraints such as code size and performance.
As shown in Figure 2, an application program is compiled using the current
instruction set, and the simulation result (feedback) is used to modify the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:4 o M. Reshadi et al.

ISA. Both compilation and simulation time are equally important, since they
contribute to the overall evaluation time. Furthermore, since all of the instruc-
tions in the entire input program are decoded irrespective of whether all of
them will be executed or not, the decoded information may consume a lot of
memory at runtime.

To address the compile time overhead in ISCS, we propose a hybrid compi-
lation technique that includes a static analysis of the input program during
compile time followed by a dynamic analysis at runtime. In the static part, the
input program is analyzed to produce the source code of an optimized decoder
for that particular program. In the dynamic part, the decoder analyzes the
input program at runtime and generates optimized code for the instructions
as if they were statically compiled and optimized. This technique significantly
reduces the compilation time and memory usage while utilizing compiler op-
timizations for generating optimized decoded instructions at runtime. Using
two contemporary processor models (ARM7 and SPARC), we demonstrate that
our technique can drastically reduce the compilation time—from thousands of
seconds to tens of seconds.

This article makes two primary contributions in design of fast and flexible
instruction-set simulation. First, we developed an ISCS technique that com-
bines the benefit of both interpretive and compiled simulation. Second, we
present a hybrid compilation technique to drastically reduce the compilation
overhead. The rest of the article is organized as follows. Section 2 presents
related work addressing ISA simulation techniques. Section 3 compares the
static and dynamic-compiled simulation approaches. The ISCS technique is
presented in Section 4. Section 5 presents our hybrid compilation technique.
Section 6 presents simulation results using two contemporary processor mod-
els: ARM7 and SPARC. Finally, Section 7 concludes the article.

2. RELATED WORK

An extensive body of recent work has addressed ISA simulation. The wide
spectrum of today’s instruction-set simulation techniques includes the most
flexible but slow interpretive simulation and faster compiled simulation. Re-
cent research addresses retargetability of ISSs using a machine description
language.

Simplescalar [Simplescalar] is a widely used interpretive simulator that
does not have any performance optimizations for functional simulation. Shade
[Cmelik 1994], Embra [Witchel 1996], and FastSim [Schnarr 1998] simulators
use dynamic binary translation and result caching to improve simulation per-
formance. A fast and retargetable simulation technique is presented by Zhu
and Gajski [1999] that improves traditional static-compiled simulation by ag-
gressive utilization of the host machine resources. Such utilization is achieved
by defining a low-level code generation interface specialized for ISA simula-
tion, rather than the traditional approaches that use C as a code-generation
interface.

Architecture description languages (ADLs) have been successfully used for
specifying processor architectures and generating efficient software toolkit

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:5

including compiler, simulator, assembler, and debugger. The focus of early ADLs
[Ramsey 1997; Onder 1998] was to specify the instruction-sets efficiently and
enable assembler/simulator generation. Retargetable fast simulators based
on an ADL have been proposed within the framework of FACILE [Schnarr
2001], Sim-nML [Hartoog 1997], ISDL [Hadjiyiannis 1997], MIMOLA [Leupers
1999], ANSI C [Engel 1999], LISA [Pees 2000; Braun 2001], and EXPRESSION
[Halambi 1999]. The simulator generated from a FACILE description utilizes
the Fast Forwarding technique to achieve better performance. All of these simu-
lation approaches assume that the program code is runtime static. In summary,
none of the previous approaches achieve the flexibility and high-simulation per-
formance at the same time.

Various simulation platforms use efficient interpreters such as threaded-
code interpreters [Bell 1973] and variations of runtime code generation for
performance improvement. For example, SImICS [Magnusson 2002] uses the
SimGen specification language to encode various aspects of the instruction-set
and apply partial evaluations to improve simulation performance. The binary
decoder is a performance bottleneck in ISSs. Qin and Malik [2003] generates
efficient decoder from an instruction pattern specification using a decision tree
and cost models. The SyntSim simulator generator [BurtScher 2004] improves
simulation performance by a judicious combination of compiled and interpreted
simulation modes as well as several optimizations, including unwanted code
elimination; NOP removal; label minimization (preservation of basic blocks);
inlining; PC update minimization; and the hard coding of constants, register
specifiers, and displacement/immediate values. SyntSim selects the instruc-
tions to be compiled based on either profile data (if available) or built-in heuris-
tics to guess the possible instructions to both improve simulation performance
and reduce compilation overhead. However, these methods of instruction selec-
tion for compiled mode are not always applicable. Furthermore, due to compiled
simulation, the full flexibility of interpretive simulation is lost. Our technique
does not require such selections and still achieves the execution speed of com-
piled simulation and full flexibility of interpretive simulation.

Braun et al. [2001] have proposed a static scheduling technique based on
the LISA machine description language. A just-in-time cache-compiled simu-
lation (JIT-CCS) technique is presented by Nohl et al. [2002]. The objective
of the JIT-CCS technique is similar to the one presented in this article—
combining the full flexibility of interpretive simulation with the speed of the
compiled technique. The JIT-CCS technique integrates the simulation com-
piler into their simulator. The compilation of an instruction takes place at run-
time, just-in-time before the instruction is going to be executed. Subsequently,
the extracted information is stored in a simulation cache for direct reuse in
a repeated execution of the program address. The simulator recognizes if the
program code of a previously executed address has changed and initiates a
recompilation. The JIT-CCS technique improves performance of interpretive
simulation by reducing the decoding overhead in ISS via a software cache that
stores the decoded information. It translates the input instructions to gen-
eral structures without further optimizations. In addition to caching the de-
coded information, our technique optimizes the execution of instructions in the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:6 o M. Reshadi et al.

simulator and improves the simulation speed by 70%, on average, over the
JIT-CCS technique.

The previous efforts in compiled simulation either ignored the compilation
overhead, or avoided it by generating nonoptimized decoded information at
runtime. Amicel and Bodin [2002] have explicitly investigated means of reduc-
ing compilation time. In their approach, the output source file is partitioned
into smaller functions and the effect of the number of functions on the compila-
tion time is demonstrated. They use assembly code of the input program rather
than the executable binary. The SyntSim simulator generator [BurtScher 2004]
addresses the compilation overhead issue by selecting 15% to 37% of the static
instructions to be compiled such that 99.9% of the dynamic instructions run
in compiled mode to amortize the synthesis and compilation time. There is no
direct effort to reduce the compilation overhead. Our technique can reduce the
compilation time by an order of magnitude, as demonstrated in Section 6.2.

3. COMPILED SIMULATION ISSUES

Compared to interpretive simulation, compiled simulation has two major dis-
advantages: (i) it is more complicated especially in retargetable simulators,
and (i1) it has an extra time and memory overhead depending on the level of
optimizations. In static-compiled simulation, the optimizations are applied to
the whole input program allowing for the generation of highly optimized code;
however, thisis at the expense of potentially large compilation time. In dynamic-
compiled simulation, the optimizations may be applied to a single instruction
(or a basic block) at runtime. Therefore, the compilation time overhead is omit-
ted, but the generated code may not be as optimized as possible. In general,
a compiled simulation technique is preferred over an interpretive technique if
the following equation holds true:

Dc+Cc+Ec§Di+Ei (1)

Here, D., E., D;, and E; are decode and execution times in compiled and
interpretive simulations, respectively. C. is the compilation time overhead in
static-compiled simulation and software cache overhead in dynamic-compiled
simulation. The goal in compiled simulation is to make E, significantly less than
E;. This leads to a larger D, or C.. In contrast, our technique focuses on reduc-
ing all of these values (D., C., and E.) simultaneously. In the remainder of this
section, we analyze the static and dynamic-compiled simulation techniques in
detail.

3.1 Static-Compiled Simulation

In static-compiled simulation, the whole target program is decoded into a source
file that is functionally equivalent with the input program. This input is then
compiled to generate an executable binary on the host machine. When executed
on the host, this program initializes the simulated environment and executes
the input program in that environment (Figure 3).

This technique works particularly well when a program is simulated many
times. In Equation (1), the decode time (D.) depends on the number of

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 207

Decoded Host
Program Assembly

Code (j
i Host
Program

(Target) Memory

App.lication Simulation
Binary Compiler

Compiletime | | Runtime

Fig. 3. Traditional compiled simulation flow.

Application
Binary

Is
Decoded?

» Execute

Runtime

Fig. 4. Dynamic compiled simulation flow.

instructions in the input program (and not the number of executed instruc-
tions). Compile time (C.) depends on the following aspects:

—Input program: Its size and the architectural features that it uses.

—Generated source code: The size, structure, and the complexity of the gen-
erated source code play a major role. Examples include number of files
and functions, the number of defined variables, and the access mechanism,
use of inlining and level of optimizations that are applied to the generated
code.

—The target language and the used features. For example, use of C language
can lead to a faster compilation compared to use of C++ since templates or
macros in C++, can increase the amount of work at compile time.

—Level of detail in simulation: Detailed information collection during simula-
tion requires more code to be instrumented between simulated instructions,
leading to an increase in the size of the source code.

Similarly, the amount of memory consumption depends on the size of input
program. In general, static-compiled simulation is the best choice when a tar-
get program must be simulated many times so that only one compilation is
necessary.

3.2 Dynamic-Compiled Simulation

Dynamic-compiled simulation, such as Shade [Cmelik 1994], eliminates the
compilation time overhead by performing a more complex decode at runtime.
As Figure 4 shows, in dynamic-compiled simulation, instead of decoding all the
input instructions, only those that get executed are decoded and the results
are stored (cached) for later use. Therefore, in Equation (1), decode time (D,)
depends on the number of executed instructions. In this equation, C. is the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:8 o M. Reshadi et al.

[Application Program] Compile Time

Binary
(Target)

Customized
Instruction
Template

Decoded
Program

Decoder

Decoded
Instruction

Instruction
Memory

< - >

Fig. 5. Instruction-set-compiled simulation flow.

overhead of accessing and updating the storage (cache) of decoded information.
In Figure 4, the Fetch, Decode, and Execute phases are usually applied to a
block of consecutive instructions (basic blocks).

Since in dynamic-compiled simulation the whole program is not com-
piled in advance, it can handle much larger input programs than static-
compiled simulation. Compared to interpretive simulation, the decode phase
of dynamic-compiled simulation is more complex, and this technique works
best when instruction are re-executed a lot.

4. INSTRUCTION-SET-COMPILED SIMULATION

We have developed an ISCS technique with the intention of combining the full
flexibility of interpretive simulation with the speed of the compiled simulation.
The basic idea is to move the time-consuming instruction decoding to compile
time and perform aggressive customizations, as shown in Figure 5. The appli-
cation program, written in C/C++, is compiled using a compiler, such as gec,
configured to generate binary for the target machine. The instruction decoder
decodes one binary instruction at a time to generate the decoded program for
the input application. The decoded program is then compiled by a C++ compiler
and linked with the simulation library to generate the simulator. The simula-
tor recognizes if the previously decoded instruction has changed and initiates
redecoding of the modified instruction. If any instruction is modified during ex-
ecution and subsequently redecoded, the corresponding location in instruction
memory is updated with the re-decoded instruction.

In traditional interpretive simulation (e.g., Simplescalar [Simplescalar]) the
decoding and execution of binary instructions are done using a single monolithic
function. This function has many if-then-else and switch-case statements that
perform certain activities based on bit patterns of opcode, operands, addressing
modes, and so on. In advanced interpretive simulation (e.g., LISA [Nohl 2002]),

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:9

the binary instruction is decoded and the decoded instruction contains point-
ers to specific functions. This information is stored and reused every time the
instruction is executed. There are many variations of these two methods based
on efficiency of decode, complexity of implementation, and performance of exe-
cution. However, none of these techniques exploit the fact that a certain class
of instructions may have a constant value for a particular field of the instruc-
tion that can be exploited for further optimizations. For example, a majority of
ARM instructions execute unconditionally, and hence, it is a waste of time to
check the condition field for such instructions every time they are executed. In
a simplified situation, the condition field can be replaced by the pointer of one of
two possible functions: One function always returns true and the other checks
the actual condition depending on the value of condition filed in the instruction
binary. The execution can be further optimized by using one function for every
possible value of the condition (e.g., 16 functions for a 4-bit condition field).
However, Section 4.1 demonstrates that there are too many possible scenarios
and it is not always practical to write all possible functions and perform compile
time function selection.

Our ISCS technique enables generation of customized functions during com-
pile time for each instruction binary by using C++ templates. The basic idea
is to define C++ templates for each instruction class in the ISA and use a C++
compiler to customize the template for each specific instruction binary during
compile time. The following procedure shows the major steps for developing a
simulator based on our ISCS technique.

Procedure to develop ISCS — Instruction-Set Compiled Simulation

Inputs: 1. Application Program Binary (Application)
2. Instruction-Set Description (/SA)
Output: Optimized ISCS Simulator.
Begin
1- Identify the instruction classes in 1S4
2- Develop C++ templates for instruction classes.
3- Decode Application by generating a customized template for each instruction
4- Compile customized templates
5- Perform interpretive simulation using optimized and decoded instructions
End

The first step in ISCS is to identify all the instruction classes in the instruc-
tion set of the architecture. Typically, this information is readily available from
the ISA manual. For example, the ARM processor has six instruction classes:
data processing, branch, loadStore, multiply, multiple load-store, software in-
terrupt, and swap. The second step is to develop C++ templates for each instruc-
tion class. The first two steps in the algorithm need to be performed manually
by the simulator developer once for an ISA. The manual development effort for
the first step is negligible (in the order of hours) in case the designer is knowl-
edgeable about the ISA. In case the designer is not aware of the instruction set,
then the first step may require several days to identify the instruction classes

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:10 o M. Reshadi et al.

from the architecture manual. The second step will require a week, since the
number of instruction classes is typically small (5—-10). Therefore, the manual
development effort will be in the order of days. The amount of manual effort
will vary during design space exploration depending on the required modifica-
tion such as how many new instruction classes are created. On average, each
iteration during exploration may add a new class and, therefore, the manual
effort will be several hours (1 day) per iteration. It is important to note that the
simulation efficiency is not affected by changing the number of classes, since
each optimized function will have smallest number of computations irrespec-
tive of the originating template size. However, it may effect the compilation
time, as discussed in Section 5.

In the third step, each instruction binary in the application program is de-
coded to generate its corresponding template parameter values, that is, the
customized template is generated. In the next step, the customized templates
are compiled and optimized to generate optimized decoded instructions. Steps 1
and 2 are performed only once for the ISA, but steps 3, 4, and 5 must be repeated
once for every application. Steps 3 and 4 correspond to the “Compile Time” sec-
tion of Figure 5 while Step 5 corresponds to the “Runtime” section of that figure.
Steps 4 and 5 determine the overall performance of the simulation, and our goal
is to speed up both of them. The compile time optimizations in Step 4 improve
the speed of the simulation in Step 5. Section 4.1 describes the template cus-
tomization procedure using an illustrative example followed by the compile
time decode and customization algorithms in Section 4.2. Finally, the decoded
instructions are used for fast and flexible simulation. Section 4.3 describes the
simulation engine that offers the full flexibility of interpretive simulation.

4.1 An lllustrative Example

Consider the data-processing instructions of the ARM processor described in
Example 1. Figure 6 shows an implementation for instructions described in
Example 1 using function pointers. The actual values of pointers to functions
are determined in a big switch-case statement in the decoder and stored in the
DPInst structure. For example, if an instruction is executed unconditionally, the
condition variable will point to Always() function. To execute an instruction, its
corresponding data is passed to the execute_dp() function, which implements
the behavior of the data-processing instructions of ARM.

Example 1: Data-Processing instructions in ARM processor.

An ARM data-processing instruction is a 32-bit instruction in the following format:
opcode {condition}{S} Rd, Rn, ShifterOperand
Where:
opcode: There are 16 operations such as Add, Sub, ...

condition: There are 16 conditions such as CarryClear, Always, Never, ...
S: Indicates whether the flag bits (Carry/Zero/Negative/Overflow) should be updated (true) or not (false).
Rd and Rn: Destination and Source registers, respectively.
ShifterOperand: Second source operand and may have any of the followings formats:

#immed: An integer constant.

Rm shift #<immed>: A register shifted by a constant value.

Rm shift Rs: A register shifted by the value of another register.
There are four shift operations: LogicalShiftLeft, ArithmeticShiftLeft, ShiftRight, and RotateRight.
The combinations of above parameters create 9 different possibilities. LogicShiftLeft and RotateRight with constant 0
are considered special cases. Therefore, there are 11 different possible ShifterOperand formats.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:11

struct DPInst {

bool (*condition) (void); //pointer to a function such as Always() that returns a Boolean.
int (*operation)(int, int); //pointer to a function that gets 2 integer inputs and returns an integer.
int dest, srcl, //index of destination and source registers
int (*shifterOperand)(int); /Ipointer to a function that gets the opcode and returns an integer.
int opcode; //opcode of the corresponding instruction
bool updateFlags //if true, the flag bits must be updated
IS
void execute_dp(DPInst inst) //A general function that simulates the behavior of DataProcessing instructions

if (inst.condition())

REGS[inst.dest] = inst.operation(REGS[inst.src1] , inst.shifterOperand(inst.opcode)),
if (inst.updateFlags)
Update_the flag_bits(...);
)
}

//possible condition functions
bool Always() { return true; }
bool Never() { return false; }

Fig. 6. A sample implementation for DataProcessing instructions in ARM.

All ARM instructions are predicated, that is, they are executed only if some
condition is true. A majority of the ARM instructions execute unconditionally
(condition field has value Always) and hence it is a waste of time to check
the condition for such instructions every time they are executed. Generally,
when certain input values are known for a class of instructions, the partial
evaluation technique [Futamura 1971] can be applied to optimize the execution.
The partial evaluation technique specializes a program with part of its input
to get a faster version of the same program. For example, for unconditional
ARM instructions, a function that does not check the conditions will run faster.
Furthermore, it is possible to have separate functions for different operations
and different ShifterOperand addressing modes. Similarly, there can be two
implementations for instructions that update the flag bits and those that do not
update the flag bits. Examples of such optimizations are shown in Figure 7. The
decoder at runtime assigns an instruction to the fastest function that simulates
the instruction’s behavior.

To take advantage of such customizations, we need to have separate func-
tions for each and every possible format of instructions so that the functions
can be optimized by the compiler at compile time and produce the best per-
formance at run time. Unfortunately, this is not an easy task. For example,
the ARM data-processing instructions have 16 x 16 x 2 x 11 = 5,632 possible
formats.! Generating all of the customized functions for the whole instruction-
set requires complex algorithms and may also impose a huge load on the
compiler.

IThey have 16 conditions, 16 operations, an update flag (true/false), and one of the source operands
is called ShifterOperand with 11 types.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:12 o M. Reshadi et al.

//A customized function for unconditional ARM data processing instructions
void execute_dp_unconditional(DPInst inst)

REGS[inst.dest] = inst.operation(REGS[inst.srcl] , inst.shifterOperand(inst.opcode)),
if (inst.updateFlags)
Update_the_flag_bits(...);
)

//A customized function for unconditional ARM data processing instructions that do not update the flags
void execute_dp_unconditional_noupdate(DPInst i)

REGS[inst.dest] = inst.operation(REGS[inst.srcl] , inst.shifterOperand(inst.opcode)),
}

//A customized function for unconditional ARM data processing instructions that update the flags
void execute dp unconditional update(DPInst 7)
{
REGS[inst.dest] = inst.operation(REGS[inst.srcl] , inst.shifierOperand(inst.opcode)),
Update_the flag bits(...);
}

//A customized function for unconditional ADD instructions in ARM that do not update the flags
void execute_dp_unconditional_noupdate_add(DPInst /)
{
REGS][inst.dest] = REGS[inst.srcl] + inst.shifterOperand(inst.opcode),
}

Fig. 7. Customized implementations for DataProcessing instructions in ARM.

To solve this problem, we define instruction classes, where each class con-
tains instructions with similar formats. Most of the time, this information is
readily available from the ISA manual. For example, we defined only one in-
struction class for all data-processing instructions of ARM. Totally, we defined
six instruction classes for the whole ARM instruction set such as DataProcess-
ing, Branch, LoadStore, Multiply, Multiple Load-Store, Software Interrupt, and
Swap. Each instruction class is expanded by the compiler and customized for
instances of the instructions in the input program. To decode and generate code
for instructions of a program, we define a set of masks for each instruction class.
The mask consists of “0,” “1” and “x” symbols. A “0” (“1”) symbol in the mask
matches with a “0” (“1”) in the binary pattern of an instruction at the same bit
position. An “x” symbol matches with both “0” and “1.” Example 2 shows the
masks for the data-processing instructions in ARM.

Example 2. Bit masks defined for the DataProcessing instruction class in ARM.

"XXXX-001X XXXX-XXXX XXXX-XXXX XXXX-XXXX"
"xxxxX-000X XXXX-XXXX XXXX-XXXX XXX(0-xxxx"
"xxxx-000x XXXX-XXXX XXXX-XXxX 0xx1-xxxx"

We use C++ templates to implement the functionality of each class of in-
structions. These templates are in fact parameterizable data structures. The
values of the template parameters are specified at compile-time, and hence
the compiler can use them for optimizations. If any of these parameters has a

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:13

template <class Cond, class Op, bool UpdateFlag, class SftOper>
class DataProcessing
{
SftOper _sftOperand,
Reg dest, srcl,
public:
virtual void execute()

{
if (Cond::execute())

{
_dest = Op::execute(_srcl, sftOperand.getValue());

if (UpdateFlag)

Update the flag bits(...);

Fig. 8. A C++ template for DataProcessing instructions in ARM.

static value that does not change at run time, the compiler can safely propagate
the corresponding value and remove unnecessary operations. Another benefit
is that since we use functions of templates rather than function pointers, the
compiler can inline the body of smaller functions that are called for simulating
one instruction (see Figure 6) and then optimize the whole code all together. In
other words, we not only avoid the over head function calls through pointer, but
also create more optimization opportunity for the compiler. Figure 8 shows the
C++ template for the ARM data-processing instructions. The template has four
parameters such as, Condition, operation, updateFlag, and shifterOperand. The
shifter operand itself is a template having three parameters such as, operand
type, shift options and shift value. In this example, if the condition is Always,
the compiler knows that the condition is always true and removes the if state-
ment from the execute() function. A more detailed example is shown in Section
4.2. We also use a Mask Table for the mapping between mask patterns and
templates. It also maintains a mapping between the mask patterns and the
values of the corresponding template parameters. This template customization
technique is used to generate aggressively optimized decoded instructions, as
described in Section 4.2.

4.2 Instruction Decoder

Algorithm 1 shows how instructions are decoded to generate the final de-
coded program. In this algorithm, each binary instruction is decoded one at
a time. To decode each instruction, first the proper template is determined
and then the selected template is customized for the corresponding instruction.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:14 o M. Reshadi et al.

Algorithm 1- Instruction decoding

Inputs: Application Program Application (Binary), MaskTable maskTable.
Output: Decoded Program DecodedProgram.
Begin
TempProgram = {}
foreach binary instruction inst with address addr in Application
template = DetermineTemplate(inst, maskTable)
template;,;, = CustomizeTemplate(template, inst)
newStr = "InstMemory[addr] = new template; "
TempProgram = AppendInst(TempProgram, newStr)
endfor
DecodedProgram = Compile(TempProgram)
End

Finally, the proper code for instantiating the customized template is added to
the program source code. The program source code, TempProgram, is fed to
a C++ compiler that performs necessary optimizations to take advantage of
the partial evaluation technique to produce the DecodedProgram. The Decod-
edProgram is loaded into instruction memory, which is a separate data struc-
ture than main memory. While the main memory holds the original program
data and instruction binaries, each cell of instruction memory holds a pointer
to the optimized functionality as well as the instruction binary. The instruc-
tion binary is used to check the validity of the decoded instruction during
runtime.

Algorithm 2 briefly describes how the proper template is determined for
each instruction binary. In DetermineTemplate function, the instruction binary
is compared with all binary masks in the maskTable, in which each binary mask
is associated with a template. When an instruction matches with a mask, the
corresponding template is selected and returned.

Algorithm 3 describes the template customization process. The algorithm’s
basic idea is to extract the values from specific fields of the binary instruction
(e.g., opcode, operand) and assign those values to the corresponding template.

We illustrate the power of our technique to generate an optimized decoded
instruction using a single data-processing instruction. Example 3 shows the
binary as well as the assembly of an ADD instruction.

Algorithm 2- DetermineTemplate

Inputs: Instruction inst (Binary), and Mask Table maskTable.
Output: Template.
Begin

foreach entry < mask; template > in maskTable

if mask matches inst
return template

endfor

End

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:15

Algorithm 3- CustomizeTemplate

Inputs: Template template, Instruction inst (Binary).
Output: Customized Template with Parameter Values.
Begin
switch instClassOf{inst)
case Data Processing:
switch (inst[31:28])
case 1110: condition = Always endcase

endswitch
switch (inst[24:21])
case 0100: opcode = ADD endcase

endswitch

return femplate < condition, opcode, ...>
endcase /* Data Processing */
case Branch: ... endcase

endswitch
End

Example 3- The binary and assembly of a data processing instruction in ARM.

Binary: 1110{000{0100|0{0010{0001{01010| 00 |{0{0011
cond|000| op |S| Rn | Rd |immed|shift|0| Rm
Assembly: ADD rl r2 r3 LSL #10

op {cond} {S} Rd, Rn, Rm Shift #immed

Since the instruction binary of Example 3 matches with the second mask
in Example 2, the DetermineTemplate function (Algorithm 2) returns the Dai-
aProcessing template (shown in Figure 8). The CustomizeTemplate function
(Algorithm 3) generates the customized template for the execute function
by matching and replacing the template parameters with the field values
at corresponding locations in the instruction. For example, the first 4 bits of
the ADD instruction in Example 3 is used to determine the corresponding
condition for executing the instruction. The value “1110” in this portion of
instruction corresponds to the condition Always. Similarly, other portions of
instruction are decoded to find the template parameter values. Figure 9 shows
the customized execute() function for the DataProcessing template (Figure 8)
using the parameter values.

After compilation using a C++ compiler, several optimizations occur on
the execute() function. The Always::execute() function call is evaluated to true.
Hence, the check is removed. Similarly, the UpdateFlag is evaluated to false. As
a result, the branch and the statements inside it are removed by the compiler.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:16 o M. Reshadi et al.

void DataProcessing<Always, Add, false, SfiOper<Reg, ShiftLeft, Imm>>::execute()
if (Always::execute())

_dest = Add::execute(_srcl, sftOperand.getValue());
if (false)
{
Update the flag bits(...);
H
}
}

Fig. 9. Customized execute() function for ADD instruction in Example 3.

void DataProcessing<Always, Add, false, SftOper<Reg, ShiftLeft, Imm>>::execute()
{

_dest=_srcl + _sfiOperand._operand << 10;

}

Fig. 10. Optimized execute() function for instruction of Example 3.

Finally, the two function calls Add::execute() and _sftOperand.getValue() get in-
lined as well. Consequently, the execute() function gets optimized into one single
statement, as shown in Figure 10.

Furthermore, in many ARM instructions, the shifter operand is a simple reg-
ister or immediate. Therefore, the shift operation is actually a no shift operation
(according to the ARM manual, a shift left zero) and is removed by the compiler.
In this way, an instruction similar to the previous example would have only one
operation in its execute() method.

4.3 Simulation Engine

Due to compile time decoding and our template customization technique, the
simulation engine is fast and simple. In this section, we briefly describe the
three basic steps in the simulation kernel such as, fetch, decode (if necessary)
and execute (shown in the “Runtime” section of Figure 5). The simulation engine
fetches one decoded instruction at a time. As mentioned earlier, each instruc-
tion entry contains two fields such as, binary and the pointer to the optimized
functionality for the instruction. Before executing the fetched instruction, it is
necessary to verify that the current instruction is valid (i.e., this instruction
is not modified during runtime). The simulation engine compares the binary
part of the current instruction having address addr with the binary instruc-
tion of the application program stored in memory at address addr. If they are
equal, the decoded instruction is valid and the engine executes the optimized
functionality referenced by the instruction.

However, if the instruction is modified, the modified binary is redecoded.
This decoding is similar to the one performed during compile time decoding
of instructions except that it uses a pointer to an appropriate function. While

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:17

we develop the templates for each class of instructions, we also develop one
function for each class. The mask table mentioned in Section 4.2 maintains
the mapping between a mask for every class of instruction and the function
for that class. The decoding step during runtime consults the mask table and
determines the function pointer. It also updates the instruction memory with
the decoded instruction (i.e., it writes the new function pointer in that address).
The execution process is very simple. It simply invokes the function using the
pointer specified in the decoded instruction.

Since the number of instructions modified during runtime is usually negligi-
ble, using a general unoptimized function for simulating them does not degrade
the performance. It is important to note that since the engine is still very sim-
ple, we can easily use traditional interpretive techniques for executing modified
instructions while the instruction-set compiled technique can be used for the
rest (majority) of the instructions. Thus, our ISCS technique combines the full
flexibility of interpretive simulation with the speed of the compiled simulation.

5. COMPILE TIME REDUCTION

In static-compiled simulation, the generated simulator is optimized by the C++
compiler. Therefore, it delivers good simulation performance, but the compila-
tion time can be extremely large since the complete input program is decoded
into source code. In dynamic-compiled simulation, the compilation time over-
head is removed and the instructions are optimized at runtime during simula-
tion. However, only simple optimizations that do not impose huge performance
penalty are possible in these approaches. As a result, the simulation perfor-
mance is sacrificed. We propose a hybrid technique that combines the advan-
tages of both static- and dynamic-compiled simulation. In our hybrid ISCS, first
the program is decoded and analyzed statically. Instead of generating source
code for every instruction in the program, we generate the source code of a de-
coder that is customized for the input program. This decoder along with the rest
of the simulation engine is compiled by a standard C++ compiler to generate
the customized hybrid ISCS simulator for the program, as shown in Figure 11.
Since the source code of the customized decoder is much smaller than the source
code of whole decoded program, generating the hybrid ISCS takes significantly
less compilation time compared to that of standard static-compiled simulation
techniques. Furthermore, the hybrid ISCS can implement much more sophis-
ticated optimizations than dynamic-compiled, simulations, since the decoder is
optimized at compile time. Moreover, the hybrid ISCS is as flexible as an inter-
pretive simulator, since it executes one instruction at a time. It is important to
note that our improved simulation flow in Figure 11 (Hybrid-ISCS) is similar
to the flow in Figure 5 (ISCS) except that the Figure 11 supports hybrid dy-
namic compilation, whereas Figure 5 relys on static compilation. On a related
note, the compile time reduction techniques (presented in this article) have no
effect on the simulation efficiency, since each optimized function will have the
smallest number of computations irrespective of the compilation technique.
In traditional static-compiled simulation, each instruction in the input pro-
gram has a corresponding code in the generated source code. However, a more
careful investigation of the instructions of a typical program shows that the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

Compile Time |

Customized

List of

instructions decoder |
Program in the for |
Binary program Optimized :

instructions

0
Rest of
simulation

i o
o engine

Generated

optimiz

Input
Program
Binary

Looked up

Execute

optimiz

Fig. 11. Hybrid instruction-set-compiled simulation flow.

number of instruction types? is significantly less than the number of instances
of instructions. An instruction type is any variation of the instruction set of the
target architecture. For example, in a program, many instruction instances,
such as Add R1, R2, R3; Add R4, R5, R6; and Add R1, R2, #10, correspond to
only two instruction types from the instruction set, that is, Add R,, R, R, and
Add Ry, R,, #immed. Therefore, instead of repeatedly generating code for in-
struction instances, we can generate customized code for each instruction type
that exists in the program. Since number of instruction classes is much less
than that of instruction instances, the generated source code is smaller and
requires considerably less time to compile. This code is then compiled and opti-
mized to generate a decoder that decodes the input program again at runtime,
and for each instruction instance, instantiates the corresponding optimized
code (instruction type). In this way, we use the static-compiled simulation ap-
proach to utilize the compiler optimizations at compile time and then use the
dynamic-compiled simulation approach to dynamically decode instructions to
their corresponding optimized codes at runtime.

One may like to explore various ways of defining instruction classes and study
their impact on compilation efficiency. It is important to note that the code size
will be comparable irrespective of how many templates (instruction classes)
are used in dynamic compilation. However, it may affect the compilation time.
If the number of templates is less than instruction classes in the architecture
manual, the corresponding templates will be very complex, since it is trying to
cluster different types of instructions. As a result, the compilation time may
increase. On the other hand, if too many instruction classes are used, it may
not decrease compilation time, since the number of possible alternatives that
the compiler is trying to explore will remain the same. As mentioned earlier,

2An instruction class (described earlier) consists of a set of similar instruction types.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:19

Add,;: AddInst

Application
Source code
generator

Add,: AddInst
Sub;: Sublnst

Equivalent
Program

Sub,: Sublnst

Input Program Generated Source Code

Fig. 12. Static decode of one program.

Switch(inst){

case Add: return AddInst; ..
Optimized
case Sub: return Sublnst; Decoder

}

Decoder
Source code
generator

Input Program Generated Source Code

Fig. 13. Dynamic decode of one program.

the basic idea of using templates is to reduce the manual effort for a simulator
developer. Therefore, it is optimal to use the same number of instruction classes
as in the architectural manual to improve readability, maintainability, and as
well as initial template development time. In the remainder of this section, we
analyze different possible scenarios where our hybrid technique can be used.
We compare these scenarios in Section 6.2.

5.1 Static Decode of One Program

This approach is same as static-compiled simulation. As shown in Figure 12,
the whole program is decoded at compile time, and for each instruction instance
in that program, a customized code is added to the source code. The generated
source code is a set of functions that create instruction objects at runtime and
load them in the instruction memory. For example, if the program contains 1,000
similar Add instructions of which only 500 execute at runtime, there will be
1,000 corresponding codes in the generated source code and 1,000 instantiations
at runtime.

5.2 Dynamic Decode of One Program

As shown in Figure 13, in this approach the instructions of the input program
are analyzed and the individual instruction types are detected. The generated
source code is in fact a decoder that contains a customized code for each in-
struction type that exists in the input program. It analyzes the instructions of
the program at runtime and decodes them by instantiating the optimized code
of the corresponding instruction type. In this case the size of the generated
source code is significantly smaller than the static decode, and hence, the com-
pilation time is considerably less. For example, if the program contains 1,000
similar Add instructions of which 500 execute at runtime, only one customized

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:20 o M. Reshadi et al.

Switch(inst){
case Add: return AddInst;

Input Program,
Decoder
Source code
generator

case Sub: return Sublnst;

}

Optimized
Decoder
Input Program,

Set of Input Programs

Generated Source Code

Fig. 14. Dynamic decode of multiple program.

code is added to the decoder for that Add instruction. At runtime, each time
the decoder detects such an Add instruction, this code is instantiated. There-
fore, there would be one customized code in the generated source code and 500
instantiated at runtime.

5.3 Dynamic Decode of Multiple Programs

It is also possible to analyze a group of input programs and detect their instruc-
tion types and then generate one decoder for all of them, as shown in Figure 14.
Our experiments show that a large number of instruction types are common
among different programs. Therefore, the size of the decoder is only slightly
bigger than that of a single program. The major benefit of this approach is that
it requires one compilation for all of the programs, while in the previous ap-
proaches, for each input program, the generated source code must be compiled.

5.4 Dynamic Decode for All ISA

The instructions of a program are a subset of all possible variations of the
instructions in the ISA. Therefore, instead of analyzing an input program and
generating the decoder for that particular program, it is better to generate all
possible variations of instructions in the instruction set and have a decoder that
can decode any input program on a specific architecture. However, this approach
is only applicable if the number of these variations is not very large or if the
simulator is used for a fixed architecture and not in a design exploration loop.

For example, the SPARC processor has a simple instruction set and the num-
ber of variations of the instructions is less than 1,000. On the other hand, the
ARM processor has a very complex instruction set and the number of variations
ofinstructions is in the range of several hundred thousand (~500k). Thus, using
this approach for ARM processor not only has a long compilation time, but also
consumes a lot of memory for the decoder and hence may not be practical. For
example, in the case of SPARC processor, the number of instruction types re-
quired for dynamic decode of multiple programs is 126 (as shown in Figure 20),
whereas the number of variations in SPAC processor is approximately 1,000.
Therefore, there will be a 10 x increase in code size (and hence the compilation
time) if dynamic decode for all ISA is used. Similarly, there will be a 1,000 x
code size increase in case of ARM processor. Clearly, it is not a good idea to
use dynamic decode for all ISA during exploration. However, once exploration
phase is over using dynamic decode for one program (Section 5.2) or multiple
programs (Section 5.3), the final optimized decoder can be built using dynamic
decode for all ISA approaches.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:21

Architecture ISA
Description

Instruction
Variation
Generator

Switch(inst){
case Addinm, flag: Teturn AddInstimm, fiag;
case Addg fag: return AddInstyeg ga;

case Addimm, no flag: return AddInstinm no

Decoder
Source code
generator

ﬂag;

Optimized
Decoder

Generated Source Code

Fig. 15. Dynamic decode of all ISA.

II Runtime check @ No runtime check ‘l

® o N Ao

Performance (MIPS)

on A~ O

adpcm bf compress jpeg crc epic g721 go Average

Fig. 16. Hybrid instruction-set-compiled simulation performance for ARM7 processor model.

6. EXPERIMENTS

In this section, we present simulation results using two contemporary proces-
sors, ARM7 [ARM7] and SPARC [SPARC], to demonstrate the usefulness of
our approach. The ARM7 processor is a RISC machine with fairly complex in-
struction set. We used arm-linux-gcc for generating target binaries for ARM?7.
Performance results of the different generated simulators were obtained using
a Pentium 3 (1GHz) with 512MB RAM running Windows 2000. The generated
simulator code is compiled using the Microsoft Visual Studio .NET compiler
with all optimizations enabled. The same C++ compiler is used for compiling
the decoded program as well. The SPARC V7 is a high-performance RISC pro-
cessor with 32-bit instructions. We used gcc3.1 to generate the target binaries
for SPARC and validated the generated simulator by comparing traces with
Shade [Cmelik 1994] simulator. We show the results using eight application
programs: adpcm, jpeg, blowfish (bf), compress, crc, epic, g721, and go. The
adpcm and jpeg benchmarks are used to compare our simulator performance
with the previously published results [Nohl 2002].

We present our results in two categories. First, we present the experimen-
tal results to demonstrate the simulation performance improvement using our
ISCS technique. Next, we present the results on compile time reduction using
our hybrid compilation technique.

6.1 Simulation Performance

Figure 16 and Figure 17 show the simulation performance using our technique
for the ARM7 and SPARC processor models, respectively. The first bar shows the
simulation performance of our technique with runtime program modification
check enabled. The simulation performance can be improved ifit is known prior
to execution that the program is not self-modifying. The second bar represents

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:22 o M. Reshadi et al.

Il Runtime check B No runtime check “

Performance (MIPS)
oON A OO N BO

adpcm bf compress jreg crc epic g721 go Average

Fig. 17. Hybrid instruction-set-compiled simulation performance for SPARC processor model.

!I SimpleScalar B Function Pointer O IC-CS !

ENeN

S
0

o

=3

Performance (MIPS)

on A~ O

adpem bf compress ipeg cre epic g721 go Ave.

Fig. 18. Effect of different optimizations on ARM7 simulator.

the simulation performance of running the same benchmark by disabling the
runtime check. We could achieve up to 25% performance improvement (23%,
on average) by disabling the instruction modification detection and updation
mechanism.

When runtime program modification check is enabled, the ARM7 simulation
speed is up to 12MIPS using the P3 (1.0GHz) host machine. To the best of
our knowledge, the best performance of a simulator having the flexibility of
interpretive simulation has been JIT-CCS [Nohl 2002]. The JIT-CCS technique
could achieve a performance upto 8MIPS on an Athlon at 1.2GHz with 768MB
RAM. Since we did not have access to a similar machine, our comparisons are
based on results running on a slower machine (Pentium 3 at 1GHz with 512MB
RAM). On the jpeg benchmark, our ISCS technique performs 40% better than
JIT-CCS technique. The same trend (30% improvement) is observed in case of
adpcem benchmark as well. Clearly, these are conservative numbers, since our
experiments were run on a slower machine.

There are two reasons for the superior performance of our technique: moving
the time-consuming decoding out of the execution loop, and generating aggres-
sively optimized code for each instruction. The effects of using these techniques
are demonstrated in Figure 18. The first bar in the chart is the simulation
performance of running the benchmarks on an ARM7 model of Simplescalar
[Simplescalar] that does not use any of these techniques. The second bar shows
the effect of decoding the instructions at runtime using function pointers and
caching the decoded information. The use of function pointers is similar to JIT-
CCS. The last bar shows the performance of our simulation approach that uses
compile-time decode and C++ templates for optimized code generation. As Fig-
ure 18 shows, the ISCS technique improves the simulation performance by 70%,
on average, compared to using function pointers, similar to JIT-CCS.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:23

471672

1,000,000
81140 47049 106964

100,000 46879 47059 47590 48031 46959
10,000+
1000 1
100 1

10 |

14

@ static
B hybrid

#of instructions
(logarithmic)

adpcm bf compress jpeg crc epic g721 go All

Fig. 19. Generated source file size in different techniques in ARM7 simulator.

3114301

1?22888 39522 40016 e e
10,000
1,000
1004
104
1_

@ static
| hybrid

#of instructions
(logarithmic)

adpcm bf compress jpeg crc epic g721 go All

Fig. 20. Generated source file size in different techniques in SPARC simulator.

We have demonstrated that ISCS coupled with our template customization
technique delivers the performance of compiled simulation while maintaining
the flexibility of interpretive simulation. Our simulation technique delivers
better performance than other simulators in this category, as demonstrated in
this section.

6.2 Compile Time Reduction

We used the ISCS technique to implement the optimized decoder in our
simulator. To exclude the effect of file structures from the compilation time
comparisons, it is important that the generated files in both static-compiled
simulation and hybrid-compiled simulation have similar structures. In all of
our experiments, each source file contained up to 100 functions and each func-
tion contained up to 100 instruction decoding.

Figures 19 and 20 show the number of instructions that exist in the gener-
ated source files in each technique for both processor models. For each bench-
mark, the first bar shows the total number of instruction instances in the input
program binary (and hence the output of static-compiled simulation), and the
second bar shows the number of distinct instruction types that exists in that
benchmark (and hence the output of hybrid-compiled simulation). The last pair
of bars shows these numbers for all benchmarks together (Section 5.3). Inter-
estingly, compared to the number of instruction instances, the number of in-
struction types change slightly between benchmarks and have a lot of common-
ality. It is important to note that our hybrid compilation technique is flexible
to incorporate any one of the dynamic compilation techniques (discussed in
Sections 5.2, 5.3, and 5.4). In the experiments shown in Figures 19 through 24,
the first bar in the figures represents the corresponding metric (code size, binary
size, or compilation time) using static compilation (described in Section 5.1), and
the second bar represents those of hybrid compilation (described in Section 5.2)

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:24 o M. Reshadi et al.

100,000 5108 To84a

8824 8857 8956 9037 8839 8856

10,000

21,000 I static

B hybrid

100 -

10 A

KB (logarithmic)

adpcm bf compress jpeg crc epic g721 go All

Fig. 21. Executable file size in different techniques in ARM7 simulator.

10700
4948 7873

‘ 0 * 1 49 5‘ 0 E* "‘ $ "" 2 340— | m static
B hybrid

adpcm bf compress jpeg crc epic g721 go All

Fig. 22. Executable file size in different techniques in SPARC simulator.

for individual programs. The second bar in the last column (marked “All”) repre-
sents the metrics for dynamic compilation for all programs (described in Section
5.3). As described in Section 5.4, it is not profitable to use dynamic decode for all
ISA in the exploration phase. Instead it can be used to build the final optimized
decoder once exploration is over.

Similarly, Figures 21 and 22 show the size of the executable binary file after
compilation. Note that in the static-compiled simulation, all of the instructions
are decoded even if they are not executed at all. In our experiments, we got
very similar performance results from both static- and hybrid-compiled simu-
lation. However, we believe that in the hybrid approach, the instructions must
be decoded again at runtime, but the smaller executable size improves the
cache behavior of the hybrid simulator compared to that of the static-compiled
simulator and, therefore, compensates the extra runtime decoding overhead.

The last bars in both figures show the size of customized decoder for all
benchmarks. Note that this technique is not applicable to traditional static
compiled simulation.

Figure 23 and Figure 24 show the comparison of the compilation time of
hybrid- and static-compiled simulation. In our experiments, the average com-
pilation time was about 3,474s for static-compiled simulation and about 28s for
our hybrid-compiled simulation. This shows, on average, 100x reduction com-
pilation time, while still benefiting from all the advantages of static-compiled
simulation. As mentioned earlier, the last bars in both figures show the com-
pilation time of decoder for all benchmarks. This compilation time is shared
among all seven benchmarks. Therefore, the overall compilation overhead per
benchmark is further reduced.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:25

100,000

8368 8732 9804 9881 8530 000 g7ip 20160
—~ 10,000
2
£
£ 1,000 @ static
§) 100 | hybrid
G 10 B
L)
o 4
g !
(= adpcm bf compress jpeg crc epic g721 go All
Fig. 23. Compilation time in different techniques in ARM7 simulator.
10,000
1,000
£
= @ static
5 100 -)
g B hybrid
- 10 B
3
2
o
g
[adpcm bf compress ipeg crc epic g721 go All

Fig. 24. Compilation time in different techniques in SPARC simulator.

7. CONCLUSIONS

Design of programmable processors and embedded applications require ISSs
for early exploration and validation of candidate architectures. Due to the in-
creasing complexity of programmable architectures and time-to-market pres-
sure, performance is the most important feature of an ISS. This article made
two important contributions in improving simulation performance: ISCS for
improving runtime performance, and hybrid-compiled simulation for reducing
compilation time in compiled simulators. Due to the simple interpretive sim-
ulation engine and optimized pre-decoded instructions, our ISCS technique
achieves the performance of compiled simulation, while maintaining the flexi-
bility of interpretive simulation. The performance can be further improved by
disabling the runtime change detection that is suitable for many applications
that are not self-modifying. The ISCS technique achieves its superior perfor-
mance for two reasons: using templates to produce aggressively optimized code
for each instance of instructions, and moving time-consuming decode optimiza-
tions to compile time. We demonstrated performance improvement of 70%, on
average, over the best-published results on an ARM7 model.

A major challenge in ISCS technique is the compilation time overhead that
makes usage of compiler optimizations impractical, especially for large appli-
cations. The problem is also present in traditional-compiled simulators. We
developed a hybrid-compiled simulation technique that utilizes the advantages
of both static- and dynamic-compiled simulation and reduces the compilation
time. In this approach, the input program is first analyzed and an optimized
decoder is generated for that program using a conventional (C or C++) com-
piler. The results showed two orders of magnitude reduction in compilation time

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

20:26 o M. Reshadi et al.

without any performance penalty. Our future work will concentrate on using
this technique for modeling other real-world architectures.

REFERENCES

AwmiceL, R., anp Bopin, F. 2002. Mastering startup costs in assembler-based compiled instruction-
set simulation. In Proceedings of Workshop on Interaction between Compilers and Computer
Architectures (INTERACT 02) IEEE, Los Alamitos, CA.

ARM7, The ARM7 User Manual. http://www.arm.com

BeLL, JR. 1973. Threaded code. Comm. ACM 16, 370-372.

Braun, G., HorrFmaNN, A., NoHL, A., AND MEYR, H. 2001. Using static scheduling techniques for the
retargeting of high speed, compiled simulators for embedded processors from an abstract machine
description. In Proceedings of the International Symposium on Systems Synthesis (ISS’01S).
ACM, New York, 57-62.

BurtscHER, M., Ganusov, I. 2004. Automatic synthesis of high-speed processor simulators. In
Proceedings of the International Symposium on Microarchitecture (MICRO’4). ACM, New York,
55-66.

CMELIK, B., AND KEPPEL, D. 1994. Shade: a fast instruction-set simulator for execution profiling.
ACM SIGMETRICS Perform. Eval. Rev. 22, 128-1317.

EncEL, F., NUHRENBERG, J., AND FETTWEIS, G.P. 1999. A generic tool set for application specific
processor architectures. In Proceedings of the 8th International Workshop on Hardware / Software
Codesign. IEEE, Los Alamitos, CA, 126-130.

Furamura, Y. 1971. Partial evaluation of computation process-an approach to a compiler-
compiler. Syst. Comput. Controls 2, 45-50.

Hapgrviannis, G., HanoNo, S., AND DEvaDAs, S. 1997. ISDL: an instruction set description language
for retargetability. In Proceedings of the Design Automation Conference (DAC’97) IEEE, Los
Alamitos, CA.

Havawmer, A., Grun, P., GanesH, V., AND KaAre, A, 1999. EXPRESSION: a language for architecture
exploration through compiler/simulator retargetability. In Proceedings of the Design Automation
and Test in Europe (DATE’99). Springer, Berlin, Germany.

Hartooa, M.R., Rowson, J.A., ReEppy, P.D., Disa1, S., DunLop, D.D., HArRcOURT, E.A., AND KHULLAR,
N. 1997. Generation of software tools from processor descriptions for hardware/software
codesign. In Proceedings of the Design Automation Conference (DAC’97). IEEE, Los Alamitos,
CA.

LEUPERS, R., ELSTE, J., AND LANDWEHR, B. 1999. Generation of Interpretive and Compiled Instruc-
tion Set Simulators. In Proceedings of the Asia South Pacific Design Automation Conference
(ASP-DAC’99). IEEE, Los Alamitos, CA.

MacNUssoN, P.S., CHRISTENSSON, M., ESKILSON, dJ., FORSGREN, D., HALLBERG, G., HOGBERG, J., LARSSON,
F., MoESTEDT, A., WERNER, B. 2002. Simics: a full system simulation platform. IEEE Comput.
35, 50-58.

Nonr, A., BravN, G., HorrmANN, A., ScHLIEBUSCH, O., MEYR, H., AND LEUPERS, R. 2002. A univer-
sal technique for fast and flexible instruction-set architecture simulation. In Proceedings of the
Design Automation Conference (DAC’02). IEEE, Los Alamitos, CA, 22—-27.

ONDER, S., Gupta, R. 1998. Automatic generation of microarchitecture simulators. In Proceedings
of the International Conference on Computer Languages. IEEE, Los Alamitos, CA, 80-89.

PeEs, S., HorrMaNN, A., aND MEYR, H. 2000. Retargeting of compiled simulators for digital signal
processors using a machine description language. In Proceedings of the Design Automation and
Test in Europe (DATE’00). Springer, Berlin, Germany, 669-673.

QiN, W., MALIK, S. 2003. Automated synthesis of efficient binary decoders for retargetable soft-
ware toolkits. In Proceedings of the Design Automation Conference (DAC’03). IEEE, Los Alamitos,
CA, 764-769.

Ramskey, N., FErnanDEZ, M.F. 1997. Specifying representations of machine instructions, ACM
Tran. Program. Lang. Syst. 19, 492-524.

Resnapi, M., MisHrA, P., aND Dutt, N. 2003a. Instruction set compiled simulation: a technique for
fast and flexible instruction set simulation. In Proceedings of the Design Automation Conference
(DAC’03). IEEE, Los Alamitos, 758-763.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

An Efficient Technique for Instruction-Set Architecture Simulation . 20:27

ResuaDI, M., AND DuTt, N. 2003b. Reducing compilation time overhead in compiled simulators, In
Proceedings of the International Conference on Computer Design (ICCD’03). IEEE, Los Alamitos,
CA, 151-153.

Resnapi, M., Mistra, P, Dutt, N. 2006. A retargetable framework for instruction-set architecture
simulation. ACM Trans. Embed. Comput. Syst. 5, 2, 431-452.

SCHNARR, E., AND LArUS, J. R. 1998. Fast out-of-order processor simulation using memorization.
In Proceedings of the Programming Language Design and Implementation (PLDI’98). ACM, New
York, 283-294.

ScHNARR, E. C., Hir, M. D., anp Larus, J. R. 2001. Facile: a language and compiler for high-
performance processor simulators. In Proceedings of the Conference on Programming Language
Design and Implementation (PLDI). ACM, New York, 321-351.

SiMPLESCALAR HOME. http://www.simplescalar.com.

SPARC. Version 7 Instruction set manual: http:/www.sun.com

WircHEL, E., AND RosenBLuM, M. 1996. Embra: fast and flexible machine simulation. In Pro-
ceedings of the International Conference on Measurement and Modeling of Computer Systems
(MMCS’96). ACM, New York, 68-79.

Zuu, J., Gasskr, D. 1999. A retargetable, ultra-fast instruction set simulator. In Proceedings of
the Design Automation and Test in Europe (DATE’99). Springer, Berlin, Germany, 298-302.

Received September 2006; revised May 2007; accepted August 2007

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 20, Publication date: April 2009.

