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Abstract—Detailed modeling of processors is required for vali-
dating processor behavior and evaluating parameters such as per-
formance and power consumption. Fast cycle-accurate simulators
are essential in handling today’s complex hardware and software
designs at a reasonable time. These problems are challenging
enough by themselves and have seen many previous research
efforts. Addressing both simultaneously is even more challenging,
with many existing approaches focusing on one over another.
Abstract models in fast simulators do not provide enough infor-
mation required for different phases of the design. On the other
hand, detailed models are very difficult to generate and result in
very slow simulators. In this paper, a modeling approach based
on reduced colored Petri net (RCPN) is proposed, which has the
following three advantages: 1) it is very generic and support a
wide range of processor features; 2) it offers a very simple and
intuitive yet formal way of modeling pipelined processors; and
3) it can generate high-performance cycle-accurate simulators.
RCPN inherits all useful features of colored Petri nets while avoid-
ing their exponential growth in complexity. In this paper, it is
shown how this approach is general enough to model features such
as very long instruction word out-of-order execution, dynamic
scheduling, register renaming, hazard detection, and branch pre-
diction. Furthermore, the results of generating cycle-accurate sim-
ulators from RCPN models of XScale and StrongArm processors
are shown, where an order of magnitude (∼15 times on the av-
erage) speedup over the popular SimpleScalar advanced reduced
instruction set computing machine simulator is achieved.

Index Terms—Microprocessors, modeling, Petri nets,
simulation.

I. INTRODUCTION

E FFICIENT and accurate modeling of processors and fast
simulation are critical tasks in the development of both

hardware and software during the design of new processors
or processor-based systems on a chip. Cycle-accurate simu-
lators simulate the functionality of a program and provide
performance metrics such as cycle counts, cache hit ratios,
branch prediction accuracy, and different resource utilization
statistics. While the increasing complexity of processors has
improved their performance, it has had the opposite effect on
both the complexity and the performance of the simulators. The
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proposed techniques for improving the performance of cycle-
accurate simulators are usually very complex and sometimes
domain or architecture specific. Due to the complexity of these
techniques and the complexity of the architecture, generating
retargetable high-performance cycle-accurate simulators has
become a very difficult task.

To avoid redevelopment of new simulators for new or modi-
fied architectures, a retargetable framework uses an architecture
model to automatically modify an existing simulator or gener-
ate a customized simulator for that architecture. Flexibility and
complexity of the modeling approach as well as the simulation
speed of generated simulators are important quality measures
for a retargetable simulation framework. Simple models are
usually limited and inflexible, whereas generic and complex
models are less productive and generate slow simulators. A rea-
sonable tradeoff between complexity, flexibility, and simulation
speed of the modeling techniques has seldom been achieved
in the past. Therefore, automatically generated cycle-accurate
simulators were more limited or slower than their manually
generated counterparts.

In some cycle-accurate simulators, the architecture is de-
scribed in terms of individual hardware component units. In
these approaches, each component may perform a different
functionality based on the binary of instructions. Therefore,
similar to real hardware, in such simulators, the behavior of
an instruction is executed in different phases at different clock
cycles. In this way, more accurate results can be achieved at the
expense of simulation performance. To improve the simulation
performance, an alternative approach is to describe the architec-
ture in terms of instruction behaviors. Typically, such fast cycle-
accurate simulators execute the instruction behavior at once,
usually in an execute unit, using a functional simulator in their
core to decode instructions and simulate their behaviors. This
means that the execution of an instruction is separated from its
timing information. The cycle-accurate simulator first detects
when to execute an instruction and then uses the functional
simulator to execute the complete instruction behavior at once.
For example, for a Load instruction in the advanced reduced
instruction set computing (RISC) machine (ARM) processor,
checking the condition, calculating the effective address, re-
questing data from memory, and reading the data happen in
different pipeline stages, whereas a functional simulator may
execute all of them at once. This approach is sufficient for the
cases where only the timing information of the instructions
is needed. However, when accurate processor behavior is re-
quired, for example, for verifying the hardware algorithms or
estimating the power consumption, more accurate simulation
models are necessary. Most often, generating and maintaining
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such accurate models are very difficult and time consuming,
and the corresponding simulators run very slow.

Colored Petri Net (CPN) [1] is a very powerful and flex-
ible modeling technique and has been successfully used for
describing parallelism, resource sharing, and synchronization.
It can naturally capture most of the behavioral elements of
instruction flow in a processor. However, CPN models of real-
istic processors are very complex mostly due to incompatibility
of a token-based mechanism for capturing data hazards. Such
complexity reduces the productivity and results in very slow
simulators. In this paper, we present reduced CPN (RCPN), a
generic modeling approach for generating fast cycle-accurate
simulators for pipelined processors. RCPN is based on CPN
and reduces the modeling complexity by redefining some of the
concepts of CPN and also using an alternative semaphore-based
approach for describing data hazards. Therefore, it is as flexible
as CPN but far less complex and can support a wide range of
architectures. Fig. 1 illustrates the advantages of our approach
using an example pipeline block diagram and its corresponding
RCPN and CPN models. It is possible to convert an RCPN
to a CPN and, hence, reuse the rich varieties of analysis,
verification, and synthesis techniques that have been proposed
for CPN. The RCPN is intuitive and closely mirrors the proces-
sor pipeline structure. RCPN provides necessary information
for generating fast and efficient cycle-accurate simulators. For
instance, our XScale [3] processor cycle-accurate simulator
runs an order of magnitude (∼15 times on the average) faster
than the popular SimpleScalar simulator for ARM [2]. This
is mainly because most of the information about the flow
of instructions can be statically extracted from RCPN. It is
an instruction-centric model; i.e., for each instruction in the
architecture instruction set, RCPN defines where its next state
is, when the instruction can advance, and what should be done
on the way from one state to another. In other words, once
the instruction is decoded, everything about its behavior in
time (clock cycle) and space (pipeline stage) will be known.
In our modeling approach, RCPN captures the schedule of
instructions (controller of processor) and their main behavior.
Other components such as cache and predictors are described
in a library, and the RCPN has references to them to control
the flow of instructions. To further improve the productivity
and efficiency of the model, we group similar instructions and
describe their behavior using instruction templates.

In this paper, Section II summarizes the related works.
Section III describes the RCPN model, and Section IV demon-
strates the RCPN model of several processor features and
examples including the one in Fig. 1. Section V describes how
RCPNs can be converted to CPNs. Section VI explains the
simulation engine and optimizations that are possible because
of RCPN. Section VII shows the experimental results, and
Section IX concludes this paper.

II. RELATED WORK

Detailed microarchitectural simulation has been worked on
for many years, and several models and techniques have been
proposed to automate the process and improve the performance
of the simulators. In interpretive simulators, instructions of

Fig. 1. Advantages of RCPN: intuitive fast simulation.

the program are fetched, decoded, and executed at run time.
Compiled simulators improve the performance of simulation
by first analyzing, decoding, and compiling the instructions of
the program into one or more functions and then executing
the corresponding functions at run time. Compiled simulators
are much faster than interpretive simulators. However, they are
more complex and sometimes less flexible.

An alternative to detailed simulation is analytical modeling.
These techniques such as those reported in [4], [38], and [39]
avoid the detailed execution of program and estimate the per-
formance and other quality measures by extracting analytical
formulations that model the behavior of application. Such tech-
niques have speed advantages over detailed simulation and can
provide valuable insight. However, these techniques are not as
accurate as detailed simulators and, hence, are out of the scope
of this paper.

In hardware-centric approaches, the architecture is modeled
and described in terms of individual hardware component units.
In these approaches, each component may perform a different
functionality based on the binary of instructions. In such cases,
the simulator executes the hardware components. Therefore,
the complete behavior of an instruction is actually executed
by the collective behavior of different components at different
times. Since the behavior of each component can be described
independent of other components in the system, they can be
reused in different designs, and hence, the hardware-centric
approaches are usually easier to maintain and expand. However,
the corresponding simulation engines are typically event-driven
because they have to simulate multiple parallel components
without having any global picture of the system functionality.
Therefore, these simulators are usually slow. Hardware-centric
approaches such as BUILDABONG [14] and MIMOLA [13]
model the architectures at register transfer level and lower levels
of abstraction. This level of abstraction is not suitable for com-
plex microprocessor modeling and results in very slow cycle-
accurate simulators. Similarly, ASim [15] and Liberty [16]
model the architectures by connecting hardware modules
through their interfaces. Emphasizing reuse, they use explicit
port-based communication that increases the complexity of
these models and have a negative impact on the simulation
speed. SystemC [17] is a C++ library that supports the dis-
crete event model of computations and uses explicit port-based
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communication scheme as well, suffering from a similar degra-
dation in cycle-accurate simulation performance. UPFAST [19]
takes a hardware-centric approach and abstracts the ports and
connections away to improve productivity as well as efficiency
for synthesized simulators. However, since all pipeline hazards
need to be resolved explicitly by the user, modeling superscalar
processors with complex control is difficult in this approach.
Chang et al. [20] have proposed a hardware-centric approach
that implicitly resolves pipeline hazards in the cost of an order
of magnitude slow down in simulation performance.

In operation-centric approaches, the architecture is described
in terms of its instructions or subinstruction operations. The
high-level behavior description of these operations is usually
linked to one or more hardware components. Operation-centric
approaches provide a higher level view of architecture com-
pared to hardware-centric approaches. Therefore, the operation-
centric architecture models can be used for code generation
and can also lead to faster architectural simulation. Zhu and
Gajski [37] have proposed a compiled simulation technique for
generating instruction-set simulators. They define a simulation
code generation interface that decouples the host processor
from the target processor. The instruction set of target processor
is described in terms of functions of the simulation code gen-
eration interface. Each host processor implements this interface
by either emitting C code or host machine assembly code. In
this way, the target program is statically decoded in to C code
or host assembly. The result is then compiled on the host
machine to create the executable program of the compiled
simulator. This approach creates very fast instruction-set sim-
ulators but cannot support detailed cycle-accurate simulation
of the processor. EXPRESSION [9], ISDL [8], and nML [7]
are operation centric, and they automate the development of
code generators. However, they are not suitable for generating
detailed cycle-accurate simulators. EXPRESSION implicitly
captures the pipeline structure through the notions of control
and data transfer paths [10]. ISDL and nML do not explicitly
support detailed pipeline control-path specification. The Sim-
nML [11] language is an extension to nML to enable cycle-
accurate modeling of pipelined processors. Sim-nML extends
nML by adding a resource usage model that assigns a sequence
of resources (R0, R1, . . . , Rn) to each instruction. During sim-
ulation, as soon as resource Ri+1 becomes free, the instruction
releases resource Ri and holds the next resource in the sequence
(Ri+1). While generating slow simulators, the proposed lan-
guage cannot describe processors with complex pipeline control
mechanisms due to the simplicity of the underlying instruction
sequencer. For example, a forwarding path between two units
in a pipeline cannot be modeled in this scheme. An instruction
may not proceed based on only the availability of a forwarding
path; it needs to know the exact value on the path at the exact
clock cycle. SimC [12] is based on a machine description in
ANSI C that describes the behavior of instructions in each clock
cycle. The program is statically decoded, and different stages of
instructions are combined to create a new program, in C, which
represents the behavior of the processor in each clock cycle.
The corresponding compiled simulator is created by compil-
ing the source code of the new program into an executable
program that simulates the original program. Architectural

features such as dynamic scheduling or variable timing (e.g.,
for memory accesses) are not easily supported in this approach,
and it also has limited retargetability. Park et al. [21] have
proposed an operation-centric technique called “early pipeline
evaluation” for simulating simple RISC-like pipelines. In this
technique, instructions execute independently and separately.
The effects of concurrency are simulated by maintaining two
separate pro cessor states, resulting in a complex modeling of
stalls and hazards. Furthermore, since instructions are executed
independently, features such as data forwarding and dynamic
scheduling cannot be modeled with this technique.

SimpleScalar [2] is a tool set with significant usage in
the computer architecture research community, and its cycle-
accurate simulators have good performance. It uses a fixed
architectural model with limited flexibility through parameter-
ization. Babel [18] was originally designed for retargeting the
GNU binary tools such as assembler and linker and has also
been used for retargeting the SimpleScalar simulator. MicroLib
[35] is a recent attempt that advocates modular simulation for
processors and aims to provide an open library of simulatable
architectural components that can be used in other simulation
frameworks such as SystemC and SimpleScalar. For example,
Perez et al. have reported the results of their experiments
with different data cache module added to SimpleScalar [36].
FastSim [22] uses the “fast-forwarding” technique to perform
an order of magnitude (i.e., 5–12 times) faster than Sim-
pleScalar. Fast-forwarding is one of very few techniques with
such a high performance; however, generating simulators based
on this technique is very complex. To decrease this complexity,
the Facile language [23] has been proposed to automate the
process. However, the automatically generated simulators suf-
fer a significant loss of performance compared to FastSim and
run only 1.5 times faster than SimpleScalar. Besides, modeling
in Facile requires more understanding of fast-forwarding simu-
lation technique rather than the actual hardware being modeled.

LISA [24] uses the L-chart formalism to model the operation
flow in the pipeline and simplifies the handling of structural
hazards. It has been used to generate fast interpretive [33]
and compiled simulators [32]. In LISA, each instruction is
described in terms of several single-cycle operations that ex-
ecute in their corresponding pipeline stage. The schedule of
these operations is specified statically and explicitly with the
L-chart formalism in LISA. Upon execution of an instruction,
the operation sequencer in the simulator schedules all of the
operations of that instruction on their corresponding resources
in proper clock cycles considering the resource availabilities.
The flexibility of LISA is limited by the L-chart formalism [34],
and to the best of our knowledge, no LISA-based model for out-
of-order architectures has been reported.

Qin and Malik have proposed the operation state machine
(OSM) [25], which models a processor in two layers, namely:
1) the hardware layer and 2) the operation layer. The hardware
layer captures the functionality and connectivity of hardware
components, simulated by a discrete event simulator. The oper-
ation layer captures the flow of operations in the hardware using
finite state machines (FSMs). The FSMs communicate with
the underlying hardware components by exchanging tokens
(events) through token management interfaces (TMIs), which
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define the meaning of these tokens. The number of OSMs in this
model depends on the number of pipeline paths that operations
can flow through. For example, to model a RISC processor such
as StrongARM [27], only one OSM is used, and thus, most of
the functionalities of processor are implemented by TMIs and
hardware layer rather than the OSMs. The generated simulators
in this model run as fast as SimpleScalar.

Petri nets have been successfully used to model and analyze
pipelined processes. They are very flexible and powerful and
additionally enable many formal analyses. Simple Petri net
models are also easy to visualize. CPNs [1] simplify the Petri
nets by allowing the tokens to carry data values. However, for
complex designs such as processor pipeline, their complexity
grows exponentially, which makes modeling very difficult and
significantly reduces simulation performance. Because of these
problems, there has been very few attempts to practically use
Petri net (or its extensions) for modeling pipelined processors.
Petri net utility tools [28] are a set of tools allowing user to
manage the complexity of a Petri net model of a processor. The
Petri net models of the processor in this tool set are statistical
and cannot be used for detailed simulations. For example, the
user specifies that an instruction may right back its results with
a probability of 0.2. The simulator of this model generates a
trace of the processor state at different times, and a statistical
tool analyzes this trace to calculate higher level concepts such
as processor utilization.

In this paper, we propose the RCPN model that bene-
fits from Petri net features while being simple and capable
of deriving high-performance cycle-accurate simulators. It is
an instruction-centric approach and captures the behavior of
instructions in each pipeline stage at every clock cycle via
modified and enhanced CPN concepts. Unlike Facile and fast-
forwarding, writing RCPN models does not require any specific
simulation knowledge. In terms of modeling capabilities, OSM
and LISA are the closest to RCPN; however, RCPN is more
formal and concise and captures a wider range of architectural
features.

III. RCPN

To describe the behavior of a pipelined processor, operation
latencies, and data, control and structural hazards must be
captured properly. A token-based mechanism such as CPN can
easily model variable operation latencies and basic structural
and control hazards. Because of architectural features such as
register overlapping, register renaming, and feedback paths,
capturing data hazards using a token-based mechanism is very
complex and difficult. In RCPN, we redefine the concepts of
CPN to make it more suitable for processor modeling and
fast simulation. As for the data hazards, we use a separate
mechanism that is explained in Section III-A.

The goal of CPN is to simplify the complexity of standard
Petri net and enhance its modeling capability. In standard Petri
net, tokens are simple indicators that show if a condition is true
or false. In CPN, a token can carry complex values from a type-
set. While maintaining the CPN properties, RCPN further sim-
plifies it to make it applicable for complex processor designs.
RCPN has a cleaner structure that is easier to understand and

Fig. 2. (a) Example pipeline structure and (b) its CPN and (c) RCPN models.

also results in much faster processor simulators. Fig. 2 shows a
very simple pipeline structure and its CPN and RCPN models.
There are two latches and four units in this pipeline. In Fig. 2(b),
circles show places (states), boxes show transitions (functions),
and black dots represent tokens. In CPN, a transition is enabled
when it has one token of proper type on each of its input arcs.
An enabled transition can fire and remove tokens from its input
places and generate tokens for its output places. In Fig. 2(b),
whenever U1 is enabled, it removes the token of L1 and puts it
in P1. Then, U2 or U4 can fire and put one token back into L1.
In other words, whenever a token is in place L1, it means that
latch L1 in Fig. 2(a) is available, and unit U1 can send it a new
instruction; and whenever a token is in place P1, it means that
an instruction is available in latch L1, and unit U2 or U4 can
use it. The number and complexity of the circular loops in the
CPN of a typical pipeline grow very rapidly with its size. These
loops not only make the CPN models very complex but are also
the main obstacle in generating high-performance simulators.

The RCPN is based on the same concept as CPN; i.e., when a
transition is enabled, it fires and removes tokens from the input
places and generates tokens for the output places. To make
RCPN more suitable for processor modeling we redefine these
elements of CPN as follows.

1) Places: A place shows the state of an instruction. To each
place, a pipeline stage is assigned. A pipeline stage is a latch,
reservation station, or any other storage element in the pipeline
that an instruction can reside in. For each pipeline stage that
an instruction may go through, there will be at least one place
in the model. Each pipeline stage has a capacity parameter
that determines how many tokens (instructions) can reside in
it at any time. We assume that when instructions finish, they
go to a final virtual pipeline stage, called end, with unlimited
capacity. The places to which this virtual final stage is assigned
represent the final state of the corresponding instructions. In
RCPN, each place is shown with a circle in which the name of
the corresponding pipeline stage is written. Places with similar
name share the capacity of the same pipeline stage. The tokens
of a place are stored in the corresponding pipeline stage.

2) Transition: A transition represents the functionality that
must be executed when the instruction changes its state (place).
This functionality is executed (fired) when the transition is
enabled. A transition is enabled when its guard condition is
true, and there are enough tokens of proper types on its input
arcs, and the pipeline stages of the output places have enough
capacity to accept new tokens. A transition can directly access
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nonpipeline units such as branch predictor, memory, cache,
etc. The transition may use the functionality of these units to
determine the type, value, and delay of tokens that it sends to
its output places.

3) Arc: An arc is a directed connection between a place and a
transition. An arc may have an expression that converts the set
of tokens that pass through the arc. For deterministic execution,
each output arc of a place has a priority that shows the order
at which the corresponding transitions can consume the tokens
and become enabled. The arc priorities are added to the model
to simplify the guard conditions of the transitions. Since RCPN
is used for modeling processors and the behavior of a processor
is always deterministic, the guard conditions will be exclusive.
Without arc priorities, the guard conditions should explicitly
check the order at which the tokens are consumed. Arc priorities
simplify these conditions in the model. In this way, the guard
conditions of transitions in the model mostly deal with dynamic
situations that depend on processor status at run time. During
simulation, these guard conditions are automatically expanded
in order to consider static conditions such as arc priorities. The
expanded conditions determine the actual order of execution of
transitions and, hence, flow of instructions at run time.

4) Token: There are two groups of tokens, namely: 1) reser-
vation tokens that carry no data (their presence in a place indi-
cates the occupancy of the place’s corresponding pipeline stage)
and 2) instruction tokens that carry complex data, depending on
the type of the instruction.

Instruction tokens are the main focus of the model since
each instruction token represents an instance of an instruction
being executed in the pipeline. In other words, RCPN describes
how an individual instruction flows through stages of the
pipeline. For each type of instruction, it describes where the
next stage is, when instruction can advance, and what should be
done during transition. In any RCPN, there is one instruction-
independent subnet that generates the instruction tokens, and
for each instruction type, there is a corresponding subnet that
distinctively describes the behavior of instruction tokens of
that type. For example, Fig. 2(c) shows the RCPN model of
the simple pipelined data path shown in Fig. 2(a). The model
is divided into three subnets, i.e., S1, S2, and S3. Subnet
S1 describes the instruction-independent portion that generates
two types of instruction tokens. In this manner, only one type
of instruction token can flow in each subnet. Note that as long
as state L1 has room for a new token, transition U1 can fire.
In fact, because of our new definition of “transition enable,”
an RCPN model can start with a transition as well as a place.
Any subnet can generate instruction tokens and send them to
their corresponding subnet. This is equivalent to instructions
that generate multiple microoperations in a pipeline (e.g., the
Multiple LoadStore instruction in XScale).

A delay may be assigned to a place, a transition, or a token.
The delay of a place determines how long a token should reside
in a place before it can be considered for enabling an output
transition. The delay of a transition expresses the execution
delay of the functionality of that transition. The delay of a
token overwrites the delay of its containing place and has the
same effect. By changing the delay of a token, a transition can
indirectly change the delay of its output place. In Section IV-B,

we show that these simple elements of model are enough to
describe behavior of instructions in a very long instruction word
(VLIW) machine.

Usually, in microprocessors, the instructions that flow
through a similar pipeline path have similar binary format
as well. In other words, the instructions that go through the
same functional units have similar fields in their binary format.
Therefore, a single decoding scheme and behavior description
can be used for such group of instructions, which we refer
to as an operation class. An operation class describes the
corresponding instructions by using symbols to refer to different
fields in their binary code. A symbol can refer to a constant,
a µ-operation, or a register. Using these symbols, for each
operation class, an RCPN subnet describes the behavior of
the corresponding instructions. During instruction decode, the
actual values of these symbols are determined. Therefore, by
replacing the symbols with their values, a customized version
of the corresponding RCPN subnet is automatically generated
for individual instances of instructions. Fig. 4 shows examples
of such operation classes. This way of grouping instructions and
using templates for simplifying models and improving simula-
tion performance of instruction-set simulators is explained in
[5] and [6]. We use a similar approach to simplify our RCPN
models and generate cycle-accurate simulators. The structure
of templates that are produced from RCPN models are the same
as those created in [5] and [6]. However, instead of having just
one function that simulates the functional behavior of the in-
struction, we add multiple functions that simulate the behavior
of instructions in different clock cycles. Section VI explains the
details of detecting and constructing these functions.

A. Capturing Data Hazards in RCPN

To capture data hazards, we need to know when registers can
be read or updated and if an instruction is going to update a reg-
ister and what its state is at any time. In many processors, regis-
ters may overlap,1 hence modifying one may affect the others.
On the other hand, generally, instructions use different pipeline
stages to read source operands, calculate results, or update
destination operands. Therefore, instructions must be able to
hold register values after reading or before updating registers.

Addressing all these issues with a token-based mechanism is
very complicated, and hence, in RCPN, we use an alternative
approach that explicitly supports a lock/unlock (semaphore)
mechanism for accessing registers, allocates temporary loca-
tions for register values, and supports overlapping registers. As
Fig. 3 shows, we model registers in three levels.

1) Register file: It defines the actual data storages, register
renaming, and pointer to instructions that will write to a register.
There may be multiple register files in a design.

2) Register: Each register has an index and points to proper
storages of the register file. Multiple registers can point to the
same storage areas to represent overlapping.

3) Register reference (RegRef): Each RegRef points to a
register and has an internal storage for storing the register value.

1For example, overlapping register banks in ARM or register windows in
Scalable Performance ARChitecture (SPARC).
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Fig. 3. Register structure in RCPN.

A symbol in an operation class that points to a register is
replaced by a proper RegRef during decode. In fact, RegRefs
represent the pipeline latches that carry instruction data in real
hardware. During simulation, this is almost equivalent with
renaming registers for each individual instruction. RegRefs’
internal values are used in the computations, and the instruc-
tions access and update registers through RegRefs’ interfaces.
The interface is fixed and includes the following commands:
canRead(), which returns true if register is allowed to be read;
canRead(s), which returns true if the instruction that is going
to update the corresponding register is in state s at the time of
call; read(), which reads the values of corresponding register
and stores it in the internal storage of RegRef; canWrite(),
which returns true if the register is allowed to be written;
reserveWrite(), which assigns the current RegRef pointer and
its containing instruction as the writers of the corresponding
register; writeback(), which writes the internal value of the
RegRef to the corresponding register and may reset its writer
pointers; and read(s), which, instead of reading the value of
the corresponding register, reads the internal value of the writer
RegRef whose containing instruction is in state s at the time of
call. The read(s) interface provides a simple and generic means
of modeling data forwarding through feedback or bypass paths.

In RCPN, data hazards are explicitly captured using Boolean
interfaces such as canRead in the guard condition of arcs as
well as non-Boolean interfaces such as read in the transitions.
These pairs of interfaces must be used properly to ensure
correctness of the model. Whenever read(), reserveWrite(),
or read(s) appears in a transition, canRead(), canWrite(), or
canRead(s) must appear in the guard condition of its input arc,
respectively.

The implementation of these interfaces may vary based on
architectural features such as register renaming. For example,
in a typical implementation of these interfaces, a transition
first checks r.canWrite() to check write-after-write and write-
after-read (WAR) hazards for accessing register r. Then, it
calls r.reserveWrite() to prevent future reads or writes. After
calling r.writeback() in another transition, register r can be
safely read or written. In RCPN, a symbol in an operation
class that points to a constant is replaced by a Const object
during decode. The Const object provides the same interface
as of RegRef with proper implementation. For example, its
canRead() always returns true, its writeback() does nothing,
and so on. In this way, data hazards can be uniformly captured
using symbols in the operation class.

In Section IV, we show by example how RCPN can cap-
ture structural/data/control hazards and operation latencies and

Fig. 4. Operation classes of a simple ISA.

how it can model processor features such as out-of-order
execution/completion, VLIW, multi-issue processors, branch
prediction, dynamic scheduling, register renaming, and in-order
completion.

IV. RCPN MODEL OF PROCESSOR

FEATURES BY EXAMPLE

In this section, we explain three different examples that cover
most of the features that can be found in today’s processors.
We assume that all of the example processors use the simple
instruction set in Fig. 4. This instruction set is described by
four operation classes, i.e., Branch, Integer, FP (floating point),
and LoadStore. Each operation class consists of symbols whose
actual value is determined during instruction decode. For ex-
ample, the L symbol in LoadStore is a Boolean symbol and
is true for load and false for store instructions. Similarly, the
offset symbol in Branch will be decoded to a register or a
constant (RegRef or Const as described in Section III-A). After
an instruction instance is decoded, the actual values of these
symbols can be accessed in the transitions of the RCPN. For an
Integer instruction token t, t.op, or t.d represents the values of
the corresponding symbols. Note that some of these symbols
are functions. For example, t.d = t.op(t.s1, t.s2) applies the
corresponding arithmetic operation to sources s1 and s2 and
stores the computation result in symbol d. Additionally, tokens
may have some default attributes. For example, t.delay and t.pc
show the delay of the token and the address of the instruction
token, respectively.

In the RCPN models of the following examples, circles show
the places, which are labeled by the name of their corresponding
pipeline stage. The boxes show the functionality of transitions,
and the codes above them show their guard conditions. The
guard conditions are written in the form of [cond1, cond2, . . .],
which is equivalent to cond1 ∧ cond2 ∧ · · ·.

A. Simple Processor With Out-of-Order Execution/Completion

Fig. 5(a) shows the block diagram of a representative out-
of-order completion processor with data forwarding. To show
the flexibility of the model, we assume that the forwarding
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Fig. 5. (a) Out-of-order execution processor and (b) its RCPN subnets.

path is used only for the first source operand of Integer in-
structions, i.e., s1. Fig. 5(b) shows the complete RCPN model
of the processor, which contains one instruction-independent
subnet and three instruction-specific subnets. The instruction-
independent subnet fetches one instruction per cycle and sends
it to L1.

The arcs that come out of L1 have guard functions that check
the source and destination operands for data hazards using the
specified interface. To model the feedback path, two arcs with
different priorities come out of place L1 and enter the Integer
Instruction subnet. If the first arc, with priority 0, cannot read
the value of first source operand, then the second arc, with
priority 1, checks if the writer instruction of operand s1 is in the
pipeline stage L3. If that is the case, then source operand s1 is
loaded by destination operand of the instruction residing in L3.
After reading the source operands and reserving the destination
operand for writing, the result is calculated in transition E and
stored in the internal value of the destination d. This value is
finally written back in transition We.

In the Branch Instruction subnet, the dotted arcs represent
reservation tokens. Therefore, in this example, when a branch
instruction is issued, it stalls the fetch unit by occupying latch
L1 with a reservation token and disabling the fetch transition.
In the next cycle, this token is consumed, and the fetch unit is
resumed. Note that, as an alternative, we can flush the L1 and
L2 latches in transition B instead, or use a branch predictor as
shown in the next example.

The LoadStore Instruction subnet demonstrates the use of
token delay in transition M to model the variable delay of
memory (cache). It also shows how part of the RCPN model
is customized based on the value of symbol L. This is a
convenient feature for grouping the instructions and simplifying
the model. However, to avoid any negative impact on the simu-
lation speed, only static symbols, whose value is known during
instruction decode, should be used. By using partial evaluation,
such symbols can be optimized away during subnet customiza-
tion. If in Fig. 5 latch L4 is replaced by L3 in the model, the
result will simply be an in-order-execution RISC processor.

B. VLIW and Multi-issue Processors

This section presents modeling of a simple two-slot VLIW
processor. We assume that the architecture can issue one integer
and one floating point instruction in each cycle and that it
has a branch prediction unit (BPU). Since in VLIW, all the
data hazards are handled by a compiler, no data dependency
checking is necessary in the RCPN model. Fig. 6(a) shows
the pipeline structure of each instruction slot. Fig. 6(b) shows
the RCPN model of this architecture, which has four sub-
nets, namely: 1) Instruction Independent, 2) Integer Instruction,
3) Branch Instruction, and 4) FP Instruction. The Instruction
Independent subnet reads the instructions, and if they are not
NOP, then it generates and fires their tokens. In the Integer
Instruction subnet, the operands are simply fetched, executed,
and written back to the destination register. In the Branch
Instruction subnet, the offset is read from the register file and
the BPU is updated. We assume that BPU implements two
functionalities, namely: 1) getNext, which either predicts the
next pc or returns pc + 8, and 2) update, which updates BPU’s
internal state based on the outcome of branch. In case of branch
miss prediction, the L1 and L4 latches are flushed, and the pc is
reloaded with the correct address. The internal state machine of
BPU can also be expanded and added to the model. The floating
point subnet is similar to the integer subnet.

For a multi-issue processor, the fetch unit is similar to the
example given above, except that instead of generating a fixed
number of tokens, it generates up to a limited number of
tokens based on the availability of resources. The model of the
rest of the processor can be similar to our previous example
in Section IV-A or can use advance techniques such as dy-
namic scheduling and register renaming, which we describe in
Section IV-C.

C. Tomasulo Algorithm

This section describes how RCPN can be used in model-
ing complex processor features such as dynamic scheduling,
reservation stations, register renaming, bus structural hazard,
and data broadcasting. Fig. 7(a) shows an architecture that
has one integer unit and one floating point unit, where each
one has three reservation stations. In this architecture, after an
instruction is fetched, it goes through the following three steps:
1) Issue: if there is an empty reservation station and there is
no read-after-write (RAW) hazard, available operands are read
from the register file to the reservation station. If no reservation
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Fig. 6. (a) VLIW pipeline and (b) its RCPN model.

station is available, the instruction (unit) is stalled until a station
is freed. 2) Execute: if one or more of the operands is not
yet available, then the common data bus (CDB) is monitored,
and as soon as the operand becomes available, it is stored in
the corresponding reservation station. Whenever both operands
are available, the execution of the operation starts. 3) Write
Back: when execution is finished, it checks for the availability
of CDB and then writes on the bus. In case that both integer
and floating point units finish the execution at the same time,
the older instruction has higher priority for writing on the CDB
[26]. Fig. 7(b) shows the RCPN model of the Integer Instruction
subnet. After an instruction is issued into the reservation station,
depending on the number of operands that are initially available
and the order that unavailable operands become available, the
instruction transitions between four possible states, all corre-
sponding to reservation station L2. The states show that both
operands are read, only s1 or s2 is read, or none of them are
read. The available operands are read using the read() method,
and the value is stored inside the instruction token. Storing the
operand value implements the register renaming technique and
avoids the WAR hazard. Furthermore, to avoid RAW hazard,
the destination register is reserved by the instruction, and future
instructions that use this register must wait until it is released
and its value put on CDB. The instructions waiting for an
operand must monitor the status of the source instruction in

Fig. 7. (a) Architecture with reservation station using (b) the Tomasulo
algorithm for integer pipeline.

each clock cycle using the canRead(end) method. If the source
instruction is in the end stage, then it must have put the results
on the bus, and so the operand can be read. If both operands are
read and the execution unit is not busy (i.e., L4 can accept a new
token), then the instruction executes and generates its results;
otherwise, the instruction waits in L2. The generated results
must be broadcasted over the shared CDB, and therefore, the
model must be able to detect the structural hazard on the bus.
Here, the bus is shared between instructions sitting in latches
L4 and L5. For Integer instructions, the guard expression of the
write back transaction must examine the status of L5 before
execution. If there is no token in L5, then the token in L4

proceeds; otherwise, the issue times of the tokens are compared,
and the older one will proceed.

In general, to model a reservation station, its capacity and
behavior must be captured. The capacity affects the structural
hazards in the architecture and is modeled by the capacity
of the pipeline stage assigned to the corresponding places
in the RCPN. The behavior updates the state of instruction
while it is in the reservation station and is modeled inherently
by transitions and places. Modeling register renaming is very
simple in RCPN because instruction tokens carry the value
of registers in the RegRefs, which play the role of renamed
registers in the actual hardware. This example also shows
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Fig. 8. Converting RCPN places to CPN places.

how to arbitrate the conflicts for accessing shared resources
using guard expressions. While RCPN is inherently a parallel
model, any kind of sequencing is simply implemented through
guards, as shown for the in-order completion of the example
given earlier. Finally, the read(s) and canRead(s) interfaces
of RegRefs are enough to model forwarding paths and data
broadcasting in RCPN.

V. CONVERTING RCPN TO CPN

To show that RCPN models maintain the formality of stan-
dard CPNs, in this section, we briefly explain how RCPNs can
be converted to CPNs. In CPN, the capacity of a place is not part
of the model, and transitions are enabled whenever there are
enough tokens of proper type in their input places, irrespective
of the number of tokens in their output places. Furthermore, the
priority of output arcs in RCPN must be converted to proper
conditions added to the guards of corresponding transitions.
Note that because of these priorities, RCPN models are de-
terministic, whereas CPN models may be nondeterministic.
Therefore, any RCPN model can be converted to an equivalent
CPN, but the reverse may not be always possible. Note that
processors must have a deterministic behavior, and hence, they
can be represented in RCPN.

A. Converting Places

In RCPN, homonymous places share the capacity of a
pipeline stage. Suppose that L(P ) represents the corresponding
pipeline stage of place P and n(P ) represents the number of
instances of such place. For conversion, we need one resource
place P ′ to represent the resource L(P ) and k = n(P ) places,
P1 . . . Pk, to represent instances of P in the RCPN model. The
initial number of tokens in place P ′ in CPN is equal to the
capacity of place L(P ) in RCPN. All instances of the end places
in RCPN are replaced with one end place in CPN. Initially,
this place holds as many tokens as the maximum possible
number of concurrent instructions in the pipeline. This place
also provides an input arc for the initial transition of the RCPN
model. Fig. 8 shows how extra arcs must be added to model the
shared resource.

B. Converting Arc Priorities

If Gi is the guard condition of a transition connected to an
arc with priority i, the guard condition of this transition in the
CPN model G′ is defined as follows:

G′ = Gi ∧ not(Gi−1) ∧ · · · ∧ not(G0).

Fig. 9. Converting reservation tokens.

C. Converting Reservation Tokens

A reservation token in RCPN occupies a place P to disable
its input transitions by reducing the capacity. In CPN, this
should be done by consuming tokens. As we explained in
Section V-A, for every place P , there will be a place P ′ in
the CPN that represents the corresponding pipeline stage of P .
Therefore, whenever a reservation token is sent to a place P
in an RCPN model, in the corresponding CPN model, a token
must be consumed from the corresponding place P ′.

One special case is when in an RCPN model a transition
sends a reservation token to its own input place. This means
that, when transition is fired, it consumes a token from its input
place, and therefore, the capacity of the place increases. At
the same time, the transition also sends a reservation token
to its input place, and therefore, the capacity of the place
must decrease. Considering the conversion rule of places, in
the corresponding CPN model, such a transition will neither
consume nor generate a token for the resource place. Fig. 9(a)
shows an example of the general case, and Fig. 9(b) shows an
example of the special case.

D. Converting RegRef Interfaces

Instead of using a token-based mechanism, RCPN models
data hazards by its model of registers and register references.
When converting to CPN, the interfaces of registers and register
references in RCPN must be converted to proper token manip-
ulations (token production/consumption).

CPN provides a generic mechanism to assign types and
values to the tokens and to use and modify them through
conditions and expressions. More specifically, arcs can have
expressions that determine what type of tokens and with what
value these tokens can pass through that arc. This can be used
to manipulate the tokens of specific registers. To convert the
register accesses in RCPN to CPN, we need to perform the
following steps.

1) We create a place RF in CPN for the register file and
initialize it with the proper number and type of tokens.
For each register in the system, there will be one token
initially stored in the register file.

2) A canRead condition and a read method always appear
together in a transition. For each canRead that appears in
the guard condition of a transition, we add an arc from
the RF place to the corresponding transition in the CPN,
and for each read in the transition, we add an arc from
the corresponding transition in CPN to the RF place.
These arcs have proper expressions that determine the
type and the value of the register token that is being used.
Fig. 10(a) and (b) shows examples of this conversion.
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Fig. 10. Converting RegRef interfaces.

3) A canWrite in RCPN means that the corresponding tran-
sition in CPN checks for the availability of a register
token in RF and a reserveWrite means that the transition
CPN consumes that register token from RF . The token
may not be returned back to the register file until its value
is written back. Therefore, a writeback in RCPN means
that the corresponding transition returns the register token
to RF . Fig. 10(c) shows an example of this conversion.

The actual implementation of RegRefs also depends on
whether the processor is implementing register renaming or not.
In case of register renaming, the conversion of RCPN to CPN
requires to carefully define token types, arc variables, etc. It is
rather a complex process and requires a good understanding of
CPN concepts that can be found in [1].

VI. CYCLE-ACCURATE SIMULATION

RCPN can generate very fast cycle-accurate simulators. Like
any other Petri net model, an RCPN model can be simulated
by determining the enabled transitions and executing them
concurrently. Searching for enabled transitions and handling
concurrency can be very time consuming in generic Petri net
models, especially if there are too many places and transitions
in the design. However, a more careful look at the RCPN model
reveals some of its properties that can be utilized to simplify
these two tasks and speed up the simulation significantly.

Of the two groups of tokens in RCPN, reservation tokens
carry no data and are used only to show unavailability of
resources. Since transitions represent the functionality of an
instruction between two pipeline stages, reservation tokens
alone cannot enable them. Therefore, only places that have an
instruction token may have an enabled output transition. While
a place may be connected to many transitions in different sub-
nets, an instruction token only goes through transitions of the
subnet corresponding to its type. In other words, based on the
type of an instruction token, only a subset of output transitions
of a place may be enabled. Since the structure of the RCPN
model is fixed during simulation, for every place and instruction
type, the list of transitions that may be enabled can be statically
extracted from the model before simulation begins. This list is
sorted based on the priorities of output arcs of the place and
is processed accordingly. Therefore, because of this property
of RCPN, not only can we significantly reduce the overhead
of searching for enabled transitions but we can also generate a
compiled simulator for an RCPN model of a processor.

For every instruction-dependent subnet of an RCPN, we
generate a C++ template class. This class stores the values

of instruction symbols and has a function for each place that
the instruction (token) can reside in. These places are, in fact,
the places in that subnet as well as some of the places in the
instruction-independent subnet of the model. At run time, the
first time that an instruction is executed, a customized instance
of the template class is created and stored in a software cache.
A pointer to this object is used in the instruction token. During
simulation, in every clock cycle, the instruction tokens of a
place are processed by calling the proper function of template
class that correspond to the place where the instruction is
stored. Fig. 11 shows the template class that implements the
Integer Instruction subnet in the RCPN model in Fig. 5. The
functions L1, L2, and L3 correspond to the places that
the instruction token can reside in. In each of these functions,
the firing mechanism of the output transitions of the corre-
sponding place is implemented. The order at which the output
transitions are processed is fixed and is determined by the
priorities of output arcs. For example, in function L1 in Fig. 11,
the first capacity of the output place L2 and the guard condition
of the output arc with priority 0 is checked. If L2 can receive
a token and the guard condition is true, then the code of the
transition is executed, and the instruction token is moved from
place L1 to place L2. Otherwise, if the guard condition of the
output arc with priority 1 is true, the corresponding transition
is fired. If none of the guard conditions are true, the instruction
token remains in that place and is processed again in the next
clock cycle. The parameters and symbols of the template class
in Fig. 11 are defined based on the instruction description in
Fig. 4. The details of defining and initializing these symbols
during instruction decode is explained in [6].

Using C++ templates forces the compiler to apply ag-
gressive partial evaluation optimizations on the instructions.
Furthermore, each instruction is decoded only once, and the de-
coded instruction is stored in a software cache while its pointer
is passed around. In this way, we avoid redecoding of instruc-
tion in different pipeline stages and in future executions of the
instruction. These three optimizations (i.e., reducing the search
for enabled transitions to only output transitions of a place in
a subnet, using template classes to utilize partial evaluation,
and caching the decoded instructions) significantly improve the
simulation performance. In the rest of this section, we also
explain how we reduce the overhead of handling concurrency.

In RCPN, enabled transitions execute in parallel; tokens are
simultaneously read from input places at the beginning of a
processor cycle and then, in parallel, written to the output places
at the end of the cycle. Therefore, the simulator must ensure
that the variables representing such places are all read before
being written during a cycle. The usual and computationally
expensive solution is to model such places using a two-list
algorithm (similar to master/slave latches). This approach uses
two token storages per place—one of them is read from and
the other is written to in the course of a cycle. At the end of
the cycle, the tokens in the written-to storage are copied to the
read-from storage.

In general, we can ensure that all tokens from the previous
cycle are read from before being written to by evaluating
all places (or their corresponding pipeline stages) in reverse
topological order. Therefore, only very few places that are
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Fig. 11. Template class implementing the Integer Instruction subnet in Fig. 5.

referenced in a circular way, usually because of feedback paths
like state L3 in Fig. 5, need to implement a two-list algorithm.
The resulting code is considerably faster since it avoids the
overheads of managing two storages in the two-list algorithm.
Note that in CPN, this well-known optimization is not applica-
ble because all the resource sharings are modeled with circular
loops.

Fig. 12 shows the main body of our simulation engine. In the
main loop, after updating the places that implement the two-list
algorithm, all places are processed in reverse topological order.
At the end of each iteration, the instruction-independent subnet
of the model, which is responsible for fetching instructions and
generating the instruction tokens, is executed.

VII. EXPERIMENTS

To evaluate the RCPN model, we modeled both StrongArm
[27] and XScale [3] processors using the ARM7 instruction
set. StrongArm has a simple five-stage pipeline. XScale is
an in-order-execution out-of-order-completion processor with

Fig. 12. Main body of simulation engine.

Fig. 13. XScale pipeline.

a pipeline structure shown in Fig. 13. The ARM instruction
set was implemented using six operation classes describing
instruction symbols and their binary coding. Except for the
operation classes, it took only one man-day for StrongArm and
only three man-days for XScale to develop both the RCPN
models and the simulators.

To evaluate the performance of the simulators, we
chose benchmarks from the MiBench [29] (blowfish, crc),
MediaBench [30] (adpcm, g721), and SPEC95 [31] (compress,
go) suites. These benchmarks were selected because they use
very few simple system calls (mainly for I/O) that should be
translated into host operating system calls in the simulator.
We used arm-linux-gcc to generate the binary code of the
benchmarks. The compiler only uses ARM7 instruction set,
and therefore, we only needed to model those instructions. The
simulators were run on a Pentium 4/1.8 GHz/512 MB RAM.

Fig. 14 compares the performance of the simulators gen-
erated from the RCPN model with that of SimpleScalarArm.
The first bar for each benchmark shows the performance of the
SimpleScalarArm simulator. This simulator implements
StrongArm architecture, and we disabled all the extra options
and used simplest parameter values to improve simulation
performance. On the average, this simulator executes 600 kHz.
The second and third bar for each benchmark shows the
performance of our simulator for XScale and StrongArm
processor models, respectively. These simulators execute
8.2 and 12.2 MHz on the average. SimpleScalar uses a fixed
architecture for any processor model. Therefore, the complexity
and performance of the simulator are almost similar across
different models. On the other hand, RCPN models are true
to the modeled processor, and hence, the performance of the
generated simulators may vary, depending on the complexity
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Fig. 14. Simulation performance (in megahertz).

Fig. 15. Clock per instruction (CPI).

of the simulated processors. The StrongArm has a very simple
pipeline structure compared to that of XScale. Therefore, not
only are there fewer places and transitions in the RCPN model
of StrongArm but instructions may also have far less number of
possible states in the places or possible execution paths in the
units (see Section VIII-A). In other words, the RCPN model
of StrongArm is simpler than the RCPN model of XScale, and
hence, the corresponding simulator runs slightly faster than
that of XScale.

Fig. 15 shows the CPI values of SimpleScalarArm and
our StrongArm simulator (RCPN-StrongARM). This figure
shows that although our simulator runs significantly faster than
SimpleScalar, the CPI values of the two simulators are almost
similar (∼10% difference).

SimpleScalarArm is based on a superscalar architecture sim-
ulator engine that assumes a typical five-stage pipeline proces-
sor architecture [40]. Its machine description is, in fact, a set
of parameters that forces the engine to behave “as close as”
possible to the target processor. However, since the pipeline
structure of the simulator is not exactly the same as the target
(i.e., the modeled processor), SimpleScalarArm itself may not
be very accurate. In our simulator, the pipeline structure is,
in fact, faithfully modeled with an RCPN model. In order to
obtain a fair comparison of the two simulators, we set the
parameters of both simulators so that the effects of different
models becomes minimal (e.g., we disabled cache, branch
prediction, etc. to simulate only the core processor). Clearly,
adding the same peripheral models to both simulators should
have a similar impact (i.e., in terms of performance and accu-
racy). Our main goal was to show that we can achieve much
higher speed, and we included the CPI as an indication (but
not absolute proof) that we modeled the processor correctly.

Nevertheless, as SimpleScalarArm developers also mention in
their documents, some of the microarchitectural details are not
available in the manual and must be derived from other sources
such as “compiler writers guide.” Different interpretations of
the information can also lead to variations in the models used
in their simulator and ours. For example, disabling the branch
predictor in SimpleScalar means that after fetching the branch
instruction, program counter is incremented and the next in-
structions are fetched and later pipeline is flushed if needed.
In other words, disabling the branch predictor in SimpleScalar
means that branch instructions are always predicted as not
taken. In our simulator, we stall the pipeline until the branch
is executed. In this way, the number of executed instructions as
well as CPIs may vary slightly between the two simulators.

The RCPN-based modeling approach does not impose any
limitation on capturing instruction schedules. Therefore, by
providing accurate models, the results of generated simulators
can be fairly accurate. Such models are usually obtained by
comparing the simulation results against a base simulator or the
actual hardware and refining the model information.

VIII. DISCUSSION

A. Model Complexity

Similar to general Petri net models, the complexity of RCPN
directly depends on the number of places and transitions. A
more complex RCPN can slow down the decoding and execu-
tion of instructions. As explained in Section III, each transition
in an RCPN model describes one execution path in a unit for
one class of instructions captured by a subnet. In the worst
case, for n instructions in the instruction set and m units
in the pipeline, we might have n × m transitions. This case
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happens only if every instruction goes through every unit in the
pipeline during execution. However, typically, the instruction
set is divided into groups of instructions that go through only a
subset of units in the pipeline. For example, in Fig. 5(b), only
LoadStore instructions go through unit M , and therefore, there
is only one transition for unit M in the LoadStore Instruction
subnet. On the other hand, when an instruction goes through a
unit, depending on the dynamic status of the pipeline, different
functionalities may be executed for that instruction in that
unit. For each of these functionalities, there may be a separate
transition in the RCPN subnet to which the instruction belongs.
For example, there are two separate transitions for unit D in the
Integer Instruction subnet in Fig. 5(b). Similarly, in Fig. 7(b),
there are four transitions that correspond to unit Issue. In gen-
eral, the upper bound of the number of transitions is given by

#transitions

≤
∑

i∈InstructionClasses

∑

u∈Units

number_of_execution_paths(i, u).

A place in RCPN shows the state of an instruction in a
pipeline stage. For example, in Fig. 5(a), after an instruction
is decoded, it goes to pipeline stage L2, and it has only one
state: decoded. In other words, only one place in each subnet is
enough to capture the sate of an instruction after going through
any transition corresponding to unit D. On the other hand, in
Fig. 7, an instruction may reside in pipeline stage L2 while
being in one of the following four possible states: 1) both
operands are available; 2) only the left operand is available;
3) only the right operand is available; and 4) none of the
operands are available. Correspondingly, there are four places
in Fig. 7(b), representing the state of an instruction residing in
stage L2. In general, the upper bound of the number of places
is given by the equation shown at the bottom of the page.

Modeling an instruction set architecture (ISA) involves two
separate steps, namely: 1) modeling the binary decoding and
2) modeling the behavior of instructions. In [6] and [41], we
have discussed the complexity of modeling the binary decod-
ing of other processors such as SPARC and Pentium using a
template-based approach. In addition to such binary code com-
plexities, the instructions in complex instruction set computing
or DSP architectures usually have a complex behavior as well.
Typically, one instruction in such processors performs multiple
operations. However, such behavior is also seen in the ARM
ISA, where, for example, a single instruction may check a
condition, set flag bits, perform an arithmetic operation, and
shift the result. Since RCPN is based on CPN, it is general
enough to model any kind of instruction behavior. In this
paper, we also showed the effect of different microarchitectural
features on the modeling effort. We expect that for a DSP-like
architecture, the modeling effort should be similar.

B. RCPN Versus Other Comparable Approaches

We could not compare the speed of our simulators with any
LISA simulators because we did not have access to either a
LISA simulator or any published results comparing LISA with
a publicly available simulator that could be used as a common
comparison point. In terms of modeling capabilities, in addition
to the architectures that can be captured in LISA, RCPN also
covers out-of-order processors. To the best of our knowledge,
LISA does not provide any formal mechanism for modeling
processors. In contrast, RCPN provides a formal yet intuitive
modeling approach.

From the modeling point of view, the RCPN and OSM
models are comparable. However, OSM uses very few FSMs,
e.g., only one FSM for StrongARM, and captures the pipeline
through these FSMs and TMI software components. RCPN
uses multiple subnets, each equivalent to an OSM, to explicitly
capture the pipeline control. For example, there are six RCPN
subnets in the StrongArm model. Only for capturing data
hazards, RCPN relies on the fixed interface software compo-
nents. Therefore, a larger part of processor behavior is captured
formally in RCPN than in OSM. In other words, the nonformal
part of OSM model (i.e., TMIs) is large enough that it needs
a separate event-driven simulation engine; but the nonformal
part of the RCPN model is a set of very simple functions for
accessing registers. Nevertheless, RCPN-based simulators run
an order of magnitude faster than OSM-based ones.

Our simulators are as fast as FastSim although we use simple
but very effective optimizations and FastSim uses the very
complex fast-forwarding technique.

On the average, our XScale simulator runs 15 times faster
than SimpleScalar. We can summarize the causes of this high
performance as follows.

1) Because of RCPN features, we can reduce the overheads
of supporting concurrency and searching for enabled
transitions.

2) We apply partial evaluation optimization to customize
the instruction-dependent subnets for each instruction
instance and, hence, improve their performance.

3) In RCPN, when an instruction token is generated, the
corresponding instruction is decoded and stored in the
token. Since the token carries this information, we do
not need to redecode the instruction in different pipeline
stages to access its data. Furthermore, the tokens are
cached for later reuse in the simulator.

C. Debugging and Extending RCPN Models

Since the simulator is generated automatically, debugging of
the implementation of the simulator is (eventually) eliminated.
Only the model itself must be debugged/verified. As described
in [6], using operation classes and templates makes debugging

#places ≤
∑

i∈InstructionClasses

∑

p∈PipelineStages
number_of_possible_states(i, p)
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much simpler. Since RCPN is formal and can be converted to
standard CPN, formal methods can be used for analyzing the
models as well.

Depending on the type of extension, RCPN models can be
typically reused and easily extended. For example, when adding
a new instruction, if the flow of instruction in the processor
is already modeled by an instruction-dependent subnet, then
only the symbols and their binary decoding needs to be added
to the corresponding operation class of the subnet. If the flow
of the new instruction is not already modeled, then a new
subnet can be easily added to an existing RCPN model with
minimum interaction with other parts of the model. Depending
on the situation, adding a new functional unit can be as easy
as adding new places in proper subnets and connecting them
to proper transitions. As a final example, in order to extend the
model of an out-of-order processor from three-way to four-way,
first a proper instruction-dependent subnet must be added to
the model, either by duplicating an available subnet or adding
a new one. Then, the instruction-independent subnet must be
updated to fetch more instructions and the capacity of the
corresponding pipeline stages must be increased to account for
the extra fetched instructions.

It is also possible to extend the transitions of an RCPN
processor model to include call-back functions to other tools.
For example, the application programming interface of a pro-
filer can be included in the transitions to collect information
such as component utilization, I/O values of units, and execu-
tion frequency of different types of instructions. Furthermore,
a call back to a software debugger can temporarily transfer the
control to another software tool that monitors the state of the
processor and possibly report it to the user.

D. Other Benefits of RCPN

As it was explained in Section I, the first step in generating
an efficient retargetable simulation framework is to have an
efficient modeling approach. In this paper, we showed that
RCPN is an efficient and intuitive modeling approach for cap-
turing pipelined processors. To create a complete retargetable
framework, in the next step, we need to develop a language
that describes the processor based on RCPN and also develop
the set of tools for analyzing the description and generating the
simulation source code. Since RCPN is formal, the correspond-
ing processor descriptions can also be used for automatic test
generation and verification of pipeline structure.

IX. CONCLUSION

In this paper, we presented the RCPN for capturing pipelined
processors and generating fast cycle-accurate simulators. Con-
ceptually, RCPN is similar to other Petri net models but is
far less complex. It has two major contributions, namely:
1) it provides an accurate, generic, efficient, and formal way for
modeling processors and 2) it generates very high-performance
cycle-accurate simulators. RCPN models are very intuitive to
generate because they are similar to the pipeline block dia-
gram of the processor. Our cycle-accurate simulators, for both
StrongArm and XScale processors, run about 15 times on the

average faster than SimpleScalar for ARM, although XScale
has a relatively complex out-of-order pipeline.

The use of CPN concepts in RCPN makes it very suitable for
different design analysis and verification purposes. The clean
distinction between different types of tokens and data hazard
mechanism in addition to the structure of RCPN can be used
to extract the necessary information for deriving retargetable
compilers. The future direction of our research is to address
these issues as well as extract fast functional simulators from
the same detailed RCPN models.
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